NÖ Glasfaser Handbuch

Leitfaden für Ausbau und Mitverlegung

Begleitung für Pilotprojekte in NÖ

EXPOSEE

Beschreibung und Unterstützung für Planung sowie Ausbau und Mitverlegung passiver Glasfaser-Infrastruktur in Niederösterreich.

Erstellt aus Regionalfördermitteln des Landes Niederösterreich auf Empfehlung von ecoplus.

Inhaltsverzeichnis

1 ι	Jber	5
1.1	. Erklärungen	5
1.2	! Inhalt des Dokuments	6
1.3	B Anmerkungen	6
2 E	Einleitung	7
2.1	Zweck und Ziel	8
2.2	Anwendung des Handbuchs	8
2.3	Passive Glasfaser-Infrastruktur	9
2.4	Ablauf des Netzausbaus in Niederösterreich	10
3 F	Prozesse und Rollen	11
3.1	,	11
3.2	, 3	14
3.3	, 3	15
3.4	. 3	16
3.5		18
3.6	5 Referenzdaten	19
	Planung und technische Anforderungen	21
4.1	3	21
4.2		23
4.3		25
4.4		27
4.5		33
4.6		36
4.7	, , ,	37
4.8	,	38
4.9	Allgemeine Planungsvorgaben	39
	Hauseinführungen	41
5.1	, , , ,	41
5.2	, , ,	43
5.3	Gebäudebegehungen	43
	Bezeichnungen	45
	? Knotenobjekte	46
6.3	,	50
6.4		53
6.5	Bezeichnungen im POP	55
7 \	Vermessung	57
7.1		57
7.2	3 , 3 , , , ,	57
7.3	, ,	57
7.4	Messungen am Glasfasernetz	58
B I	nternationale Standards und Verweise	59
A.1	! Farbcodierung nach IEC 60304	59

Über 5

1 Über

Das vorliegende Handbuch begleitet die Pilotprojekte zum Ausbau von Glasfaser-Infrastruktur in Niederösterreich. In Anlehnung an die Erkenntnisse aus diesen Piloten werden die Inhalte daher laufend adaptiert.

Das Dokument baut direkt auf dem Planungsleitfaden Breitband des Bundesministeriums für Verkehr, Innovation und Technologie (BMVIT) in der Fassung vom 1. Mai 2015 auf. Für das Verständnis dieser Anleitung ist die Kenntnis des BMVIT Planungsleitfaden notwendig, jedoch wurden zur leichteren Erfassung von Zusammenhängen Auszüge direkt oder sinngemäß übernommen.

Als weiterführende Englischsprachige Literatur für das Thema FTTH ist das FTTH Handbook des FTTH Councils in der Fassung vom 14. Februar 2014 zu empfehlen.

Der aktuelle Status des Dokumentes ist PUBLIC BETA in der Version 0.9.11. Diese Version dient insbesondere dazu Fachexperten die Möglichkeit für qualifiziertes Feedback zu geben.

1.1 Erklärungen

1.1.1 Inhaltliche Verantwortung

Die Verantwortung liegt bei der Niederösterreichischen Glasfaserinfrastrukturgesellschaft mbH (nöGIG). Bei Fragen steht Ihnen das Team der nöGIG unter der Mail Adresse handbuch@noegig.at zur Verfügung.

Die technischen Kapitel dieses Handbuchs basieren auf der Expertise der Firma Geo-Data GmbH (Deutschland) und wurden mit eigenen Inhalten ergänzt.

Die redaktionelle Betreuung sowie Illustrationen erfolgte durch die Firma correlate.at (Österreich).

1.1.2 Haftung

Die Inhalte dieses Buches werden mit größter Sorgfalt erstellt und durchlaufen umfangreiche Abstimmungszyklen. Trotzdem können örtliche Erfordernisse besondere Anforderungen an eine Planung oder Ausführung stellen, welche vielleicht gänzlich oder teilweise nicht berücksichtigt sind. Es obliegt dem Anwender die Konsistenz der Inhalte in Bezug auf die durchzuführende Planung und Ausführung zu prüfen und gegebenenfalls Rückfrage bei der nöGIG zu halten.

Eine Haftung der Redaktion oder des Herausgebers für etwaige Personen-, Sach- und Vermögensschäden, die sich aus dem Gebrauch dieses Handbuchs ergeben, ist ausgeschlossen.

1.1.3 Darstellung von Produkten

Sämtliche Inhalte und Darstellungen von Produkten oder die Nennung von herstellerspezifischen Eigenschaften sind exemplarisch und bedeuten keinesfalls eine Empfehlung des Herausgebers oder der Redaktion.

1.1.4 Lizenzbestimmungen

Das NÖ Glasfaser Handbuch der nöGIG ist lizensiert unter einer <u>Creative Commons Namensnennung - Nicht kommerziell - Keine Bearbeitungen 4.0 International Lizenz.</u>

Das Handbuch oder Teile daraus dürfen unter Nennung der nöGIG sowie Nennung des Links bzw. in geeigneten Medien auch direkte Verlinkung auf https://noegig.at verwendet werden. Die Verwendung dieses Handbuches in kommerziellen Projekten ist gestattet. Für die Nutzung des Handbuchs oder Teile daraus darf jedoch kein Entgelt gefordert werden.

1.1.5 Allgemeines

Wir legen großen Wert auf die Gleichberechtigung der Geschlechter. Im Sinne einer leichteren Lesbarkeit wird im Text dieser Publikation jeweils nur eine Geschlechterform verwendet. Das betreffende Wort bezieht sich jedoch immer auf beide Geschlechter.

Über 6

1.2 Inhalt des Dokuments

Das Kapitel Einleitung beschreibt den allgemeinen Kontext für den Ausbau der Glasfaser-Infrastruktur in Niederösterreich. Im Kapitel *Prozesse und Rollen* werden alle relevanten Planungs- und Errichtungsabläufe beschrieben. Im Kapitel *Planung und technische Anforderungen* sind zu verwendende Komponenten des Glasfasernetzes spezifiziert. Im Kapitel *Bezeichnungen* sind alle Regeln zur Bezeichnung der einzelnen Komponenten definiert. Das Kapitel *Vermessung* beschreibt die Anforderungen an die Dokumentation der tatsächlichen Realisierung.

1.3 Anmerkungen

Das Dokument verwendet besondere Textauszeichnungen. Besonders wichtige Passagen oder Hinweise sind mittels seitlicher Markierung hervorgehoben.

Wichtig

Der Inhalt dieses Blocks ist besonders wichtig und muss beachtet werden.

Hinweis / Empfehlung

Der Inhalt gibt eine Erläuterung oder spricht eine Empfehlung aus.

2 Einleitung

Eine leistungsfähige Breitband-Infrastruktur ist eine Grundvoraussetzung für Wirtschaftswachstum, Innovationen und den territorialen Zusammenhalt. Sie ist die Basis, um die regionale Wettbewerbsfähigkeit und Innovationskraft zu stärken, neue Beschäftigungsmöglichkeiten und Anreize zu Betriebsgründungen zu schaffen, Standortverlagerungen der Wirtschaft zu verhindern und Auslandsinvestitionen zu ermöglichen.

Das Land Niederösterreich hat sich zum Ziel gesetzt, eine flächendeckende Versorgung mit zukunftsfähigem Breitband zu erreichen. Diese Versorgung erfolgt gemeinsam mit privaten Anbietern und der Investition in eine öffentliche, zukunftsfähige Infrastruktur.

Eine zukunftsfähige Breitband-Infrastruktur zeichnet sich durch folgende Eigenschaften aus:

- Zuverlässige, von äußeren Einflüssen weitgehend unabhängige, stabile Verbindung
- Symmetrische und schnelle Geschwindigkeiten im Up- und Downlink
- Sehr niedrige Latenzzeiten
- Ausreichende Kapazitäten für zukünftige Anwendungen

In jenen Gebieten Niederösterreichs, in denen die Versorgung mit zukunftsfähigem Breitband von privaten Unternehmen nicht gewährleistet werden kann, sorgt das Land Niederösterreich für die Umsetzung. Das **Modell Niederösterreich** sieht eine offene Infrastruktur vor, die Endkunden und Unternehmen einen attraktiven Anschluss an die globale Datenwelt ermöglicht. Dieses Modell mit den drei Ebenen ist bereits in mehreren EU Ländern umgesetzt und erprobt.

Internet- und Kommunikationsdienste

Für den eigentlichen Zugang zum Internet bzw. die Nutzung von IP-TV und auch Telefonie sorgen bestehende und neue Dienstanbieter. Diese schließen direkt die Verträge mit den Endkunden und Unternehmen ab und sorgen auch für die Abrechnung der Nutzung.

Neutraler Betrieb der aktiven Netz-Komponenten

Ein neutraler Betreiber sorgt für den reibungslosen Betrieb der notwendigen aktiven Komponenten. Dieser Betreiber sorgt somit, aufbauend auf der physikalischen Verbindung, für die Datenanbindung der einzelnen Gebäude

Passive Infrastruktur

Die Errichtung erfolgt durch einen regionalen Träger und verbleibt, ähnlich wie Kanalisation und Wasserleitungen, im öffentlichen Eigentum. Die passive Infrastruktur sorgt somit für die physikalische Anbindung der Gebäude an (bereits vorhandene) überregionale Verbindungsleitungen, sogenannte Backbone

Abb. 1 – Das Niederösterreichische Modell mit den 3-Ebenen

Die **Niederösterreichische Glasfaserinfrastrukturgesellschaft** (kurz **nöGIG**) ist die vom Land Niederösterreich gegründete und beauftragte Trägerorganisation für den Aufbau von öffentlicher *Passiver Infrastruktur* in NÖ und eine 100% Tochter der ecoplus. Die nöGIG ist ausschließlich auf der Ebene der *Passiven Infrastruktur* tätig. Die Ebenen *Neutraler Netzbetrieb* und *Internet- und Kommunikationsdienste* werden durch die am Markt zur Verfügung stehenden Dienstleister bedient.

2.1 Zweck und Ziel

Dieses Dokument beschreibt die prozeduralen und technischen Anforderungen für Planung und Errichtung von passiver Infrastruktur in Niederösterreich, die entweder in Kooperation mit der nöGIG, in deren Auftrag oder mit dem Ziel einer Übergabe bzw. Verpachtung an oder Bewirtschaftung durch die nöGIG errichtet wird. Ziel des Dokumentes ist somit die Vereinheitlichung der Vorgehensweise in den einzelnen geographischen Regionen und damit auch die Nutzung größtmöglicher Synergien.

2.2 Anwendung des Handbuchs

2.2.1 Warum

Das Handbuch bietet die einheitliche technische Basis für den Ausbau von passiver Glasfaserinfrastruktur im Rahmen der Breitbandinitiative des Landes NÖ. Nur mit einem gemeinsamen Verständnis für alle wesentlichen Begriffe, Definitionen und Planungsgrundlagen kann die notwendige Qualität für einen problemlosen und ökonomischen Ausbau des öffentlichen Glasfasernetzes in NÖ erreicht werden. Dieses Handbuch stellt somit die wichtigste Informationsbasis in technischen Belangen dar.

2.2.2 Wer

Das Handbuch ist an eine breite Gruppe von Nutzern und interessierten Personen gerichtet. In erster Linie ist das Handbuch jedoch an jene gerichtet, die sich intensiv mit dem Glasfaserausbau in NÖ beschäftigen werden bzw. müssen. Planer, Ausführende, Pächter, etc. sind jene Nutzergruppen welche die Richtlinien, die in diesem Handbuch definiert sind, bei ihrer täglichen Arbeit umsetzen und berücksichtigen müssen. Aber auch Bürgermeister, Breitbandbeauftrage, Ziviltechniker und andere interessierte Leser werden Erklärungen und Antworten auf technische Fragen finden.

2.3 Passive Glasfaser-Infrastruktur

Der Verantwortungsbereich der NöGIG beinhaltet die Planung, Errichtung und Bewirtschaftung der gesamten passiven Glasfaserinfrastruktur welche für den Betrieb eines FTTH/FTTB Glasfasernetzes notwendig ist. Diese umfasst die sogenannte Ortszentrale (POP) inklusive Ausrüstung mit passiven Komponenten, Klima- und Stromversorgung sowie sämtliche Leerverrohrung, Glasfaserkabel, Faserverteiler, Verbindungs- und Verteilschächte, Hausanschlüsse und Kabelabschlüsse in den Gebäuden, etc. im gesamten Ausbaugebiet. Zusätzlich ist die Verbindung von der Ortszentralen zu möglichen Netzübergabepunkten, also jene Glasfaserverbindungsleitungen mit den die Verbindung ins Internet hergestellt werden kann in der Verantwortung der NöGIG.

Der Verantwortungsgebereich ist in der nachfolgenden Abbildung schematisch dargestellt.



Abb. 2 - FTTH Netzstruktur

2.4 Ablauf des Netzausbaus in Niederösterreich

Der Ablauf des Netzausbaus in Niederösterreich wird im Wesentlichen durch zwei unterschiedliche Voraussetzungen bestimmt. Wo ein regionaler Breitbandbedarf besteht, wird ein flächendeckender Ausbau eines FTTH Netzes vorgenommen. Dort wo Infrastrukturprojekte geplant und durchgeführt werden, werden durch Mitverlegung Synergien zur Errichtung von Teilen eines FTTH Netzes genutzt. Diese werden dann später durch gezielten Ausbau in ein bestehendes oder zu errichtendes FTTH Netz eingebunden.

Die Errichtung des Glasfasernetzes in Niederösterreich soll somit durch die 2 Hauptabläufe, "Mitverlegung bei Bau und Sanierungsprojekten von Basis-Infrastruktur" und "Vollständige Erschließung eines Ausbaugebietes bei regionalen Breitbandbedarf" gewährleistet werden.

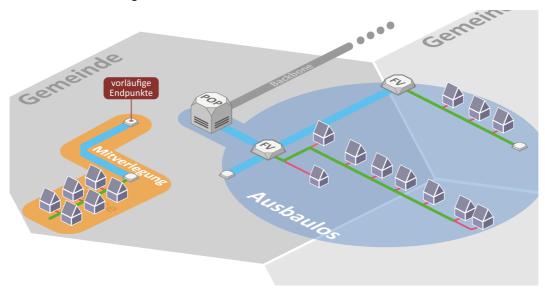


Abb. 3 - Ausbau und Mitverlegung

2.4.1 Mitverlegung bei Bau bzw. Sanierungsprojekten von Basis-Infrastruktur

Jedes Jahr finden in Niederösterreich viele unterschiedliche Bau- und Sanierungsprojekte für Basis-Infrastruktur statt. All diese Projekte im Straßenbau, Kanal und Wasserbau, bei der Stromversorgung und Straßenbeleuchtung etc. können als Gelegenheit für die Mitverlegung von passiver Infrastruktur genutzt werden. Dabei entsteht zwar ein "Flickenteppich" eines Netzes, der jedoch einen späteren flächigen Netzausbau stark beschleunigen und in den Kosten deutlich reduzieren kann.

Beim Mitverlegen muss es sich daher um eine gut strukturierte Vorgehensweise handeln. Dazu gehört, dass Mitverlegungsmaßnahmen von einem übergeordneten Plan abgeleitet sind, ein sachgemäßer Einbau der Leerrohre stattfindet und eine vollständige Dokumentation der errichteten Netzteile erstellt wird.

2.4.2 Vollständige Erschließung von Ausbaugebieten bei regionalen Breitbandbedarf

Anders hingegen bei der vollständigen Erschließung eines Ausbaugebiets. Dabei wird die gesamte passive Infrastruktur welche für die Aktivierung von Teilnehmeranschlüssen notwendig ist errichtet. Von den einzelnen Hausanschlüssen über die Ortszentrale bis hin zu einem Netzübergabepunkt wird das Netz in einem Projekt errichtet. Eine Inbetriebnahme aller Anschlüsse im Ausbaugebiet kann unmittelbar nach Fertigstellung erfolgen. Alle bereits durch Mitverlegen errichteten Netzteile werden dabei berücksichtigt.

Ein Ausbaugebiet bzw. Ausbaulos ist typischerweise definiert durch

- eine Region, bestehend aus mehreren Gemeinden oder Teilen von Gemeinden.
- einer Gemeinde oder Teilen von Gemeinden mit einer definierten Anzahl an Hausanschlüssen, die eine technische und wirtschaftliche Erschließung sinnvoll machen.

Hinweis

Auch beim vollständigen Ausbau sind Synergien durch Mitverlegung zu nutzen.

3 Prozesse und Rollen

3.1 Prozessabläufe

Das Mitverlegen von Leerrohren und der gezielte Ausbau eines FTTH Netzes in einer Region sind die beiden wesentlichen Abläufe zur Errichtung einer flächendeckenden und zukunftsfähigen Breitband-Infrastruktur. Die Abläufe und Zusammenhänge sind nachfolgend veranschaulicht.

Abb. 4 - Ausbau und Mitverlegung

3.1.1 Allgemeine Interpretation

Die Illustration in Abb. 4 zeigt den groben Ablauf der notwendigen Maßnahmen für die Errichtung passiver Infrastruktur bei Mitverlegung und Ausbau. Es handelt sich hierbei um eine schematische Darstellung der wesentlichen Aufgaben. Eine tiefergehende Prozessdarstellung ist nicht Ziel dieser Abbildung.

In der Darstellung finden sich zwei Schleifen. Sowohl Mitverlegung als auch Ausbau werden in der Praxis mehrfach und auch in unterschiedlichen Ausprägungen durchlaufen. Jeder dieser Schleifendurchläufe erfordert die Verfügbarkeit einer Grobplanung für die ausgewählte Region.

Wichtig

Ausbau oder Mitverlegung OHNE vorhandene und aktuelle Grobplanung sind NICHT sinnvoll umsetzbar.

Hinweis

Sowohl Ausbau und Mitverlegung können innerhalb einer betrachteten Region auch mehrfach und zur gleichen Zeit stattfinden. Auch Ausbau und Mitverlegung im gleichen Gebiet schließen sich nicht aus.

Die farblichen Zuordnungen der einzelnen Blöcke zur Region und/oder nöGIG definieren die Zuständigkeiten für die hauptsächlichen Handlungen und Aufgaben im jeweiligen Block ("die treibende Kraft"). Diese dienen in erster Linie zur groben Orientierung. Jeder dieser Blöcke beinhaltet mehrere Teilaufgaben. Die Verantwortung für diese wird dorthin übergeben, wo die bestmöglichen Voraussetzungen zur Umsetzung und der größtmöglichen Effizienz in der Gesamtbetrachtung liegen.

Beispiel Detailplanung: die treibende Kraft für die Umsetzung einer Detailplanung liegt bei der nöGIG. Aus der Region oder dem betroffenen Gebiet müssen jedoch wesentliche Informationen beigesteuert werden.

3.1.2 Erläuterungen zum Ablauf

01 - Koordinator

Der regionale Breitbandkoordinator übernimmt die Kommunikation zwischen den Anforderungen der Region und der nöGIG. Der regionale Breitbandkoordinator unterstützt darüber hinaus die in der Region im Zuge der Planung und des Ausbaus tätigen Unternehmen. Eine Rollenbeschreibung ist in Kapitel 3.2 zu finden.

Zur Optimierung des Einsatzes ergibt sich als sinnvolle Größe für eine Region der Zusammenschluss von mehreren Gemeinden. Hierbei wird vor allem auf die bereits etablierten Strukturen der Kleinregionen in Niederösterreich gesetzt. Gruppen von Gemeinden, die nicht Teil einer Kleinregion sind, oder ein unabhängiger, jedoch anderweitig sinnvoller regionaler Zusammenschluss kommen ebenfalls in Frage. Die Voraussetzung jeder Region zusätzlich zur Nominierung eines Koordinators sind der klare kommunale Wille und auch die Übernahme der Verantwortung für die Umsetzung.

02 - Grobplanung

Die Verfügbarkeit einer Grobplanung ist eine der wesentlichsten Voraussetzungen innerhalb der Region. Dies gilt sowohl für den Ausbau als auch das Mitverlegen von Infrastruktur. Die nöGIG übernimmt hier gemeinsam mit dem Koordinator aus der Region die notwendigen Schritte zur Umsetzung. Die Grobplanung ist detaillierter in Kapitel A3.2 beschrieben.

Erläuterung

Die Grobplanung wird durch die nöGIG beauftragt. Die Ergebnisse werden konsolidiert und elektronisch abrufbar von der nöGIG zur Verfügung gestellt.

Die Ergebnisse einer Grobplanung werden durch die Umsetzung von Breitband-Infrastrukturprojekten selbst und durch sämtliche (bauliche) Änderungen in den Regionen laufend beeinflusst und müssen dementsprechend adaptiert werden. Die Aktualität der verfügbaren Grobplanungs-Ergebnisse ist daher insbesondere vor neuen Planungs- oder Baumaßnahmen zu überprüfen und gegebenenfalls zu aktualisieren.

3.1.3 Schleife Mitverlegung

03 - Detail-Rohrplanung

Jede Mitverlegung beginnt mit der Überprüfung der Ist-Situation vor Ort und gegebenenfalls Aktualisierung sämtlicher Referenzdaten. Zu diesen zählen insbesondere der Grobplan, die aktuellen Breitband-Infrastruktur-Bestände sowie die Datenbestände in GIP, GWR und Aufgrabungs-GIS. Der Koordinator sorgt in seiner Rolle für die Aktualisierung dieser Daten durch die verantwortlichen Gemeinden und Bauämter.

Derzeit beauftragt die Gemeinde die Detail-Rohrplanung für die Mitverlegung für das betroffene Gebiet. Die Inhalte sind in Kapitel 3.4 näher spezifiziert. Für eine korrekte Planung sind die aktuelle und absehbare Nutzung miteinzubeziehen.

04 - Mit-Ausschreibung

Grundvoraussetzung für eine effiziente Mitverlegung ist die gleichzeitige Durchführung im Zuge des Basis-Infrastrukturprojektes. Die Ausschreibungsunterlagen sind daher so zu gestalten, dass entweder das vorwiegend bauausführende Tiefbauunternehmen die Mitverlegung selbst durchführt oder in Kooperation mit einem Partnerunternehmen organisiert.

Wichtig

Die Anforderungen für die Errichtung der Glasfaser-Infrastruktur (bzw. Teilen davon) sind daher im Zuge der Basis-Ausschreibung bereits mitzuliefern. In der Praxis hat sich gezeigt, dass eine nachträgliche Ergänzung zu deutlich erhöhten Kosten führt. Generell ist eine Mitverlegung nur dann empfehlenswert, wenn es technisch und wirtschaftlich sinnvoll ist.

05 - Mit-Verlegung

Grundvoraussetzung für eine effiziente Mitverlegung ist die gleichzeitige Durchführung im Zuge des Basis-Infrastrukturprojektes. Die Vermeidung von Schnittstellen und die zeitliche Koordination unterstützen eine effiziente und kostenoptimierte Ausführung.

Hinweis

Eine besondere Rolle kommt der Logistik bzw. Materialbeschaffung im Allgemeinen zu. Die nöGIG ist aktuell in der Ausarbeitung eines Vorschlages zur kostenoptimierten Beschaffung durch Sammelbestellung und zentraler Logistik.

Abschluss der Mit-Verlegung ist die Abnahme und Dokumentation. Diese ist durch eine dafür geeignete Stelle durchzuführen. Sämtliche Umsetzungen mit Relevanz für die Breitband-Infrastruktur sind mit dem Status "asbuilt" an die nöGIG zu liefern.

3.1.4 Schleife Ausbau

11 - Vergabe Netzbetrieb

Der aktive Netzbetreiber ist das Bindeglied zwischen dem Kunden und den Service Providern. Der aktive Netzbetreiber entscheidet über die Auswahl der Service Provider. Die einzelnen Service Provider besitzen ein Portfolio an Diensten, denen das eigentliche Interesse des Anschlussnutzers gilt. Für die Erhebung des Bedarfs in Schritt 06 ist es daher essentiell, welcher aktive Netzbetreiber (mit welchem Service Providern im Hintergrund) den Anschluss bedient.

Die Vergabe des Netzbetriebs zielt auf größtmögliche Wirtschaftlichkeit für den Endkunden ab. Ein Kriterium dafür ist ein großflächiges Netzgebiet, das von einem Betreiber effizient betreut werden kann.

06 - 40% Vorverträge

Voraussetzung für den wirtschaftlich sinnvollen Ausbau eines Gebietes innerhalb einer Region ist die Bereitschaft der lokalen Bevölkerung, Unternehmen, Kommunen und sonstigen Institutionen dieses Service in Anspruch zu nehmen. Wirtschaftlich sinnvoll ist die Errichtung, wenn sich **4 von 10 Haushalten** innerhalb des betroffenen Ausbaugebietes für die Nutzung eines Glasfaser-Anschlusses entscheiden.

Entscheidend für den nächsten Schritt ist daher die Erreichung der **40%-Marke**. Die Vorverträge sind daher zu erfassen und zu protokollieren.

Hinweis

In der Praxis hat sich die durch lokalen Verantwortlichen und regionalen Koordinator gemeinsam durchgeführte Erhebung mit Besuchen bei den zukünftigen Nutzern als ausgesprochen effizient erwiesen.

07 - Detailplanung

Jede Detailplanung beginnt mit der Überprüfung der Ist-Situation vor Ort und gegebenenfalls Aktualisierung sämtlicher Referenzdaten. Zu diesen zählen insbesondere der Grobplan, die aktuellen Breitband-Infrastruktur-Bestände sowie die Datenbestände in GIP, GWR und Aufgrabungs-GIS. Der Koordinator sorgt in seiner Rolle für die Aktualisierung dieser Daten durch die verantwortlichen Gemeinden und Bauämter.

Die notwendige Detailplanung für den Ausbau wird durch die nöGIG beauftragt. Die Inhalte der Detailplanung sind in Kapitel 3.3 näher spezifiziert. Für eine korrekte Planung ist auch die absehbare Nutzung miteinzubeziehen.

08 - Ausschreibung Ausbaugebiet

Die Ausschreibung zur Bauausführung erfolgt auf Basis der durchgeführten Detailplanung und wird durch die nöGIG durchgeführt.

09 - Errichtung Ausbaugebiet

Das mit der Errichtung beauftragte Unternehmen führt unter der Projektleitung der nöGIG und mit Unterstützung des regionalen Koordinators als Ansprechperson in der Region diese durch.

10 - Betrieb

Die Anforderungen und Inhalte dieses Blocks sind in ergänzenden Unterlagen erläutert.

3.2 Überblick Grobplanung

Die Grobplanung liefert als Ergebnis einen Überblicks-Netzplan für den Ausbau passiver Glasfaser-Infrastruktur in den vordefinierten Gebieten. Die Grobplanung beinhaltet darüber hinaus eine einfache Kostenschätzung sowie einen Leerverrohrungsplan für Mitverlegung.

Die Beauftragung der Grobplanung erfolgt durch die nöGIG und in Abstimmung mit dem für den Infrastruktur-Ausbau nominierten regionalen Vertreter der Kleinregion.

Die Planung findet auf Basis der zur Verfügung gestellten Daten statt. Begehungen sind keine vorgesehen.

3.2.1 Ergebnisse und Leistungsumfang

- Vorläufige Festlegung der Standorte für POPs, Netzübergabepunkte, Faserverteiler
- Vorläufige Netzsegmentierung: Welcher Kunde ist mit welchem POP verbunden
- Vorläufige Trassenplanung für Backhaul-, Feeder- und Dropsegmente
- Leerverrohrungsschemaplan unter Berücksichtigung von vorhandener Infrastruktur
- Abschätzung der Leerrohr und Kabellängen pro Typ
- Grobe Kostenschätzung auf Basis von Standardkostensätzen (Material und Aufwand) für Zielgebiet aufgeteilt nach Segmenten/Ortschaften
- Einbringung der Grobplanung in zentrales Netzdokumentationssystem (GIS fähig)
- Vorschlag eines phasenweisen Ausbaus nach Prioritäten (KMUs, Schulen, Altersheime, usw.)
- Grobplanung ist Basis für Detail- und Ausführungsplanung

Die Ergebnisse der Grobplanung werden der nöGIG in definierter Form übermittelt.

3.2.2 Ausgangsbasis

- Definition des Planungsgebietes (typischerweise pro Kleinregion)
- Informationen der Graphenintegrations-Plattform (GIP) NÖ sowie Informationen zur Gebäudenutzung basierend auf dem Gebäude- und Wohnungsregister (GWR) und Aufgrabungs-GIS
- Informationen zu existierenden Beständen (Leerverrohrungen, Glasfaserbestände, Backhaul Übergabepunkte, Altbestände Kanäle, Wasserleitung, usw.)
- Informationen zu kurz- und mittelfristig Möglichkeiten der Mitverlegung sowie geplanter Bauprojekte sind dem Aufgrabungsverzeichnis zu entnehmen.
- Planungsleitfaden des BMVIT sowie das NÖ Glasfaser Handbuch in der jeweils aktuellen Fassung

Wichtig

Die genannten Daten werden durch die nöGIG, dem regionalen Vertreter und der Breitbandkoordination des Landes NÖ nach Einverständniserklärung der Gemeinden zur Verfügung gestellt. Die beauftragten Planungsbüros dürfen diese Daten ausschließlich für den genannten Auftrag verwenden.

3.3 Überblick Detailplanung

Ziel der Detailplanung sind alle notwendigen Planungen, welche für die Errichtung eines voll funktionsfähigen FTTH Netzes im vorgegebenen Ausbaugebiet erforderlich sind. Die Detailplanung basiert auf dem aktuellen Grobplan, den aktuellen Breitband-Infrastruktur-Beständen sowie den aktuellen Referenzdaten (GIP, GWR, Aufgrabungs-GIS). Das Ergebnis umfasst alle Pläne, welche als Grundlage für die nachfolgende Bauausschreibung und Bauausführung dienen.

Wichtig

Im Falle der Mitverlegung liegt der Fokus auf den Leerrohren. Kabelplanungen sind soweit einzuschließen, als diese eine Auswirkung auf die Spezifikation und Errichtung der Leerverrohrung haben. Siehe dazu 3.4

Die Beauftragung der Detailplanung erfolgt durch die nöGIG und in Abstimmung mit dem regionalen Breitbandkoordinator.

3.3.1 Ergebnisse und Leistungsumfang

- Genaue Positionierung aller Elemente des FTTH Netzes
- Genaue Positionierung der Trassen, Querungen und Hauseinführungen
- Spezifikation des Materials wie Rohre, Kabel, Faserverteiler, Spleißboxen und Hauseinführungen.
- Überarbeitung sämtlicher Materiallisten
- Ausschreibungsunterlagen für Tiefbau, Material und sonstige Dienstleistungen
- Beschriftungsvorgaben auf Basis der nöGIG Standards
- Projektplan f
 ür die Ausf
 ührung
- Ausführungspläne für sämtliche Gewerke
- Termin- und Kostenplan
- Übermittlung der Ergebnisse an die nöGIG und Einspielung der Daten ins zentrale Asset Management
- Aktualisierung des betroffenen Grobplans

Hinweis

Im Zuge der Begehung sind die getroffenen Annahmen der Gebäude-Nutzung zu überprüfen. Dabei wird auch die exakte Trassenführung festgelegt und mit den anderen Einbauten abgeglichen

3.3.2 Ausgangsbasis

- Definition des Ausbaugebietes oder der Möglichkeit zur Mitverlegung
- Der aktualisierte Grobplan der Region
- Aktuelle Informationen aus der Graphenintegrations-Plattform (GIP) NÖ sowie Informationen zur Gebäudenutzung basierend auf dem Gebäude- und Wohnungsregister (GWR)
- Informationen zu existierenden Beständen (Leerverrohrungen, Glasfaserbestände, Backhaul Übergabepunkte, Altbestände Kanäle, Wasserleitung, usw.)
- · Planungsleitfaden des BMVIT sowie das NÖ Glasfaser Handbuch in der jeweils aktuellen Fassung

Wichtig

Alle genannten Daten werden durch die nöGIG und der Breitbandkoordination des Landes NÖ über den regionalen Koordinator den beauftragen Unternehmen zur Verfügung gestellt. Die Daten dürfen von diesen ausschließlich für den genannten Auftrag verwendet werden.

3.4 Hinweise Detailrohrplanung

Ergibt sich durch ein Basis-Infrastrukturprojekt die Möglichkeit der Mitverlegung von Leerrohrsystemen, ist dieses Mitverlegeprojekt auf Basis der existierenden Grobplanung zu projektieren. Ziel der Mitverlegung ist die kostengünstige und möglichst vollständige Einbringung eines Leerrohrsystems für die weitere Verwendung im Rahmen des Basis-Infrastrukturprojektes.

Möglichkeiten für die Mitverlegung können sein

- Aufschließung neuer Siedlungsgebiete
- Verlegung der Energieversorgungsleitungen von der Luft in die Erde
- Straßenbauprojekte (Landesstraßen, Güterwege, Gemeindestraßen)
- Kanal und Wasserbauprojekte (Neubau, wie Sanierung)
- Markt- und Dorfplatzgestaltungen
- ..

Hinweis

Insbesondere bei Leitungsbaumaßnahmen Dritter lässt sich ein erheblicher Teil der Baukosten eines Breitbandnetzes durch die Nutzung von Synergien einsparen. Daher ist bei jeder bekannten Baumaßnahme bereits in der Vorplanung zu prüfen, ob eine Mitverlegung zeitlich, technisch und wirtschaftlich sinnvoll ist.

Im Idealfall reicht die Verwendung des existierenden Leerrohrplans aus der aktuellen Grobplanung aus. Aber in vielen Projekten wird eine weiterführende Detailplanung für Leerrohre, exakte Trassenführung, exakte Positionierung Faserverteiler etc. notwendig sein. Diese Detailrohrplanung muss aus dem Grobplan abgeleitet sein.

Typische Mitverlegeprojekte und zugehörige Leistung könnten sein:

Projekt A: Eine neue Siedlungsstraße wird in einem Gemeindegebiet errichtet.

Die Planung umfasst: Mikrorohrplan für die Hausanschlüsse, Festlegung Standort zugehöriger Faserverteiler, Schächte, etc. Festlegung Anschluss Feederbereich, ...

Projekt B: Ein Güterweg wird generalsaniert. Es könnten ein abgesetzte Gebäudegruppe aufgeschlossen werden. 2 Bäche müssen gequert werden. Laut Grobplanung sollte etwas mitgelegt werden. Die Planung umfasst: Überprüfung der Trassenführung auf Eignung und gegebenenfalls Evaluierung von Alternativen. Mikrorohrplan für die Hausanschlüsse. Planung Bachquerungen, ...

3.4.1 Ergebnisse und Leistungsumfang

- Spezifikation Detailrohrplan, Faserverteiler, Hausanschlüsse, Hauseinführungen, etc.. (abhängig vom ieweiligen Proiekt)
- exakte Trassenführungen
- Ausschreibungsunterlagen zur Vergabe der notwendigen Positionen beim Infrastrukturprojekt. Sollte eine Mitausschreibung nicht möglich sein, kann dieses auch separat vergeben werden.

3.4.1.1 Backhaul-Bereich

Voraussetzung für eine bedarfsgerechte Mitverlegung im Backhaulbereich ist das Vorhandensein eines übergeordneten Gesamtkonzeptes. Dazu gehören u. a. folgende Aspekte:

- Abgrenzung der POP-Bereiche
- Festlegung von POP-Standorten
- Anknüpfungspunkte an ein Backbone-Netz
- Redundantes Backhaul-Netz als längerfristiges Ziel
- Prüfung auf vorhandene und nutzbare Leerrohrkapazitäten als Alternative

Falls das vorgesehene Leerrohmaterial nicht rechtzeitig beschafft werden kann, ist in Betracht zu ziehen, klassische Schutzrohre vom Typ DA 50 zu verlegen.

3.4.1.2 Feeder- und Dropbereich

Im Normalfall verlaufen Feederkabel weitestgehend parallel zu Dropkabeln. Eine getrennte Betrachtung der beiden Ebenen ist daher nicht zielführend. Erfahrungsgemäß muss häufig sehr kurzfristig über eine Mitverlegung entschieden werden. Folgende Aspekte sind dabei zu beachten:

- Berücksichtigung von innerörtlichen Backhaultrassen
- Abgrenzung von Versorgungszellen
- Festlegung von Standorten f
 ür Faserverteiler
- Berücksichtigung von Hausanschlüssen, die nicht direkt von der Baumaßnahme berührt werden, jedoch später vom selben Faserverteiler versorgt werden sollen
- Wenn vorsorgliche Abzweige für Hausanschlüsse gemacht werden, ist auf die richtige Richtung zum (geplanten) Faserverteiler zu achten!

Falls das vorgesehene Leerrohmaterial nicht rechtzeitig beschafft werden kann, ist in Betracht zu ziehen, klassische Schutzrohre DA 110 oder DA 125 zu verlegen. In diese Schutzrohre können später die eigentlichen Mikrorohre eingezogen werden.

Es gilt als Faustformel zu beachten:

- DA 110 → Einzug von zwei Rohrverbänden
- DA 125 → Einzug von drei Rohrverbänden

Wichtig

Bei allen Mitverlegungsmaßnahmen ist die Dokumentation der verlegten Rohre zwingend erforderlich.

3.5 Rollen

3.5.1 nöGIG

Die nöGIG als verantwortliches Unternehmen für den öffentlichen Glasfaserausbau in Niederösterreich übernimmt Verantwortung in den Bereichen Planung, Finanzierung, Kommunikation, Ausbau und Verwertung der öffentlichen Glasfaserinfrastruktur in NÖ.

3.5.2 Regionaler Koordinator

Der regionale Breitbandkoordinator ist eine von der Region bestimmte Person, die für den Aufbau einer zukunftsfähigen Breitbandinfrastruktur als Schnittstelle zwischen den Gemeinden und der nöGIG agiert und sich während der Grobplanungsphase um den reibungslosen Ablauf dieser in der Region kümmert.

Die Grobplanung ist ein zentrales Element für den regionalen Ausbau und die Mitverlegung bei klassischen Infrastruktur-Projekten. Basis für diese Grobplanung sind korrekte und aktuelle Bestandsdaten aus der Region.

Zu den wesentlichsten Aufgaben dieser Rolle zählen daher die Koordination der ...

- · Erfassung und Aktualisierung aller Daten in GIP und GWR durch die Gemeinden, die Koordination der
- Erfassung bestehender und nutzbarer Bestände (z.B. Leerrohre, Altbestände Kanäle, ...) sowie kurz- und mittelfristiger Möglichkeiten zur Mitverlegung durch die Gemeinden und Bauämter.

Ein weiterer Aspekt der Tätigkeit ist darüber hinaus die Kommunikation zwischen der Region und der nöGIG sowie mit den zur Grobplanung beauftragten Planungsbüros und mit anderen regionalen Koordinatoren. Ideale Kandidaten und Kandidatinnen für diese Rolle sind daher in der Region bestens vernetzt und besitzen bereits etablierte Kommunikationskanäle mit Gemeinden und Bauämtern.

Zusammenfassung

Die Rolle regionaler Breitbandkoordinator fungiert als regionale Anlaufstelle für alle Anfragen, Informationen und Projektauskünfte zur Grobplanung für die Gemeinden sowie für die Planungsbüros. Darüber hinaus sorgt die Person für die ausreichende Qualität und Aktualität aller notwendigen Datenbestände.

3.6 Referenzdaten

Für die Planung sind die Referenzdaten aus GIP und GWR sowie dem Aufgrabungs-GIS heranzuziehen. Die Daten werden den beauftragten Unternehmen für sämtliche Schritte vom Amt der NÖ Landesregierung zur Verfügung gestellt. Die Datenbereitstellung erfolgt über den NOE Geo Shop. Der Datensatz wird 1 bis 2 mal jährlich aktualisiert.

3.6.1 Graphenintegrationsplattform (GIP)

Eine Beschreibung zur GIP sowie speziell zum Datenmodell ist unter folgendem Link abrufbar: http://www.gip.gv.at/ogd.html

3.6.2 Gebäude und Wohnungsregister (GWR)

Der GWR Datensatz ist ein GIS Datensatz, der die X/Y-Koordinaten der Gebäude auf Basis des **Bundesmeldenetz Meridianstreifens 34 (BMN34)** beinhaltet. Es wird unterschieden zwischen Nutzungseinheiten pro Bestandsgebäude, Nutzungseinheiten pro Gebäude mit einem gemeldeten Bauvorhaben vom Typ Neuerrichtung, Nutzungseinheiten pro Gebäude mit einem gemeldeten Bauvorhaben vom Typ Abbruch mit Neuerrichtung und Nutzungseinheiten pro Gebäude mit einem gemeldeten Bauvorhaben vom Typ Umbau.

Die Spalten tragen die Namen des Typs der Nutzungseinheit nach folgendem Schlüssel:

[WO]	Wohnung	[LA]	Landwirtschaftliche Nutzung
[WA]	Wohnung / Arbeitsstätte	[GA]	Privatgaragen im Gebäude
[GE]	Wohnfläche für Gemeinschaften	[KI]	Kirche, sonstige Sakralbauten
[HO]	Hotel und andere Einheiten für kurzfristige	[PS]	Pseudobaulichkeit (Zelte, Wohnwägen,)
	Beherbergung	[SO]	sonstiges Bauwerk
[BU]	Büroflächen	[DG]	Dachbodenfläche
[HA]	Groß- und Einzelhandelsflächen	[KE]	Kellerfläche
[VE]	Verkehr und Nachrichtenwesen	[VS]	Verkehrsflächen
[IN]	Industrie und Lagerei	[GV]	Gesellschafts-/Partyflächen
[KU]	Kultur, Freizeit, Bildungs- und		

Zusätzlich gibt es noch eine Spalte mit der Gesamtanzahl aller Nutzungseinheiten in diesem Gebäude.

NÖ Glasfaser Handbuch PUBLIC BETA 0.9.11 21. Juli 2015

Gesundheitswesen

4 Planung und technische Anforderungen

Dieses Kapitel beginnt mit der grundlegenden Struktur und führt im Anschluss daran die Elemente eines FTTH Netzes auf. Die einzelnen Kapitel zu jedem Element beinhalten die quantitativen und technischen bzw. qualitativen Merkmale, die bei der Planung zu berücksichtigen sind. Beide Teile wirken unmittelbar auf die Kosten.

Wichtig

Das NÖ Glasfaserhandbuch beruht auf dem Planungsleitfaden des BMVIT (in der Version vom 28. Februar 2014) und ergänzt diesen. Im Besonderen gilt das für dieses und alle nachfolgenden Kapitel.

4.1 Verantwortungsbereich

Der Verantwortungsbereich der nöGIG beginnt bei der Netzübergabe vom Backhaul Betreiber und endet mit der Faserterminierung im Gebäude der Nutzer. Je nach Bauausführung und insbesondere beim Mitverlegen treten unterschiedliche Ausprägungen (z.B. nur Leerrohre bis zur Grundstücksgrenze), diese befinden sich aber allesamt zwischen diesen beiden Endpunkten.

Das Netzkonzept beschreibt und erklärt den technischen Aufbau des Netzes in seinen Elementen. Diese Elemente sind:

- die funktionalen und bautechnischen Netzknotendes FTTH/FTTB Netzes wie POP, Faserverteiler, Verbinder, Abzweiger, ...
- das Leerohrnetz zur Verbindung der Netzknoten mit Schutz- und Mikrorohren im Backhaul-, Feederund Drop-Bereich
- das LWL-Kabelnetz, welches innerhalb der Rohre den POP über die Faserverteiler und anderen Netzknoten mit den Nutzern verbindet und die Verbindung zu anderen POPs bzw. dem Backbone herstellt.

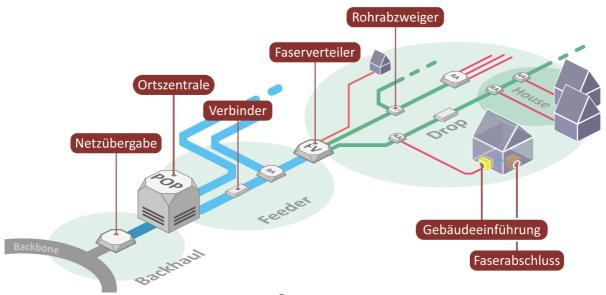


Abb. 5 - Übersicht FTTH Netz

Die Netzknoten in einem Netz sind verbunden mit dem Leerohrnetz und den darin enthaltenen LWL-Kabeln. An den Netzknoten werden Leerrohrkomponenten und / oder einzelne Fasern miteinander verbunden.

 Bei Mehrparteienhäuser endet die Verantwortung in der Spleiß-Kassette des Gebäudeeinführungspunktes (BEP). Für die Verkabelung im Gebäude ist der Hauseigentümer verantwortlich.

Bei Einfamilienhäusern endet die Verantwortung mit dem Faserabschluss (FTU).

Die grundlegende Struktur des hier betrachteten Netzes ist Punkt-zu-Punkt (P2P). Das bedeutet, dass jede Nutzungseinheit (Wohnung, Geschäft, Haus, Unternehmen) mit mindestens einer Glasfaser durchgehend mit dem Faserverteiler und POP verbunden ist.

Bei der Planung sind über den Nutzbestand hinaus aktuell und zukünftig absehbare Anschlüsse zu berücksichtigen. Darunter fallen beispielsweise Baulücken und bereits bekannte oder beabsichtigte Erschließungen.

Wichtig

Die in den einzelnen Unterkapiteln erwähnten Reserven beziehen sich auf zukünftige, zum heutigen Zeitpunkt NICHT absehbare Erweiterungen. Baulücken, bekannte Erschließungen und Ausbauten sind im normalen Kontingent und nicht in der Reserve einzuplanen.

Speziell in expandierenden Gebieten ist bei der Planung auf zukünftige Bauten (Bauhoffnungsland) Rücksicht zu nehmen und die Netzstruktur auf diese Erweiterung anzupassen.

Wichtig

Informationen über eventuelle Konflikte mit den Interessen des Denkmal- und Umweltschutzes sind bei der jeweils zuständigen Behörde einzuholen und zu beachten.

4.2 POP

Im POP kommen alle Glasfasern eines Anschlussbereiches zusammen und werden in einem Schranksystem fachgerechnet terminiert. Der Netzbetreiber schaltet im POP die Anschlüsse auf seine Vermittlungstechnik und übergibt den gesammelten Datenverkehr an ein übergeordnetes Datennetz.

- Im POP enden alle Leerrohre und LWL-Kabel von den Faserverteilern des Anschlussbereiches
- Im POP enden Leerrohre und LWL-Kabel des Backhaul Netzes.
- Die LWL-Kabel werden im POP auf einem Optical Distribution Frame (ODF) strukturiert abgeschlossen.

4.2.1 Standort

Ein POP wird bevorzugt innerhalb kommunaler Gebäude errichtet. Ist das technisch oder wirtschaftlich nicht sinnvoll, so ist die Errichtung in Container-Bauweise auf einem kommunalen Grundstück vorzusehen. In Ausnahmefall können Räume und Fläche angemietet werden.

Bei der Auswahl des Standortes sind folgende, ungereihte Faktoren zu beachten:

- Technische Realisierbarkeit, allem voran die Entfernungen im Feeder + Drop Bereich sowie die Nähe zu einem Zubringeranschluss.
- Wirtschaftliche Optimierung in Bezug auf das zu errichtende Versorgungsgebiet. Unter diesen Aspekt fallen beispielsweise die Siedlungsstruktur des Versorgungsgebietes sowie natürliche (Flüsse, Wälder, ...) und technische Grenzen (Autobahnen, Zugtrassen, ...).
- Eignung und langfristige Verfügbarkeit des Gebäudes
- Zufahrt und Parkmöglichkeit ohne Verkehrsbehinderung zumindest mit Kleinlastwagen möglich
- Zugang für beauftragte, gebäudefremde Personen 7x24h möglich

POPs für kleinere Gebiete (ca. 300 Anschlüsse) können auch als Straßenschrank (Street Cabinet), geeignet für den Einbau von aktiven Geräten, ausgeführt werden.

4.2.2 Quantitative Merkmale

Die Größe eines POP wird vor allem durch die Anzahl der zu versorgenden Anschlüsse und den Platzbedarf des Netzanbieters bestimmt.

Die Anzahl der **Gesamtfasern**, die an einem POP abgeschlossen werden, kann über folgende Faustformel errechnet werden. Diese Formel dient lediglich der groben Abschätzung des Platzbedarfs und ist mit Abschluss der Grobplanung mit der tatsächlichen Planung zu verifizieren:

Anzahl_Fasern = (Anzahl_Nutzungseinheiten x 2 + Anzahl_Gebäude) + 20% Reserve

Als grobe Abschätzung der Anschlüsse je POP dient folgende Formel:

Anzahl_Anschlüsse = (Anzahl_Wohneinheiten + Anzahl_Betriebe) + 20% Reserve

Ein Richtwert für Größe des POP-Bereiches im durchschnittlichen kleinstädtischen Gebiet ist etwa 1.000 Nutzungseinheiten (Wohn- oder Gewerbeeinheiten). Sind Siedlungsbereiche räumlich getrennt, sind kleinere POP-Bereiche mit weniger Nutzungseinheiten (ca. 500) sinnvoll. Wenn andererseits eine höhere Dichte an Nutzungseinheiten vorliegt, können auch POPs mit deutlich mehr als 1 000 Kundenanschlüssen bei ähnlichen Entfernungen im Feederbereich wirtschaftlich sinnvoller sein.

Hinweis

Die P2P Implementierung erlaubt prinzipiell auch eine Punkt-zu-Mehrpunkt Verbindung (P2PM). Die dafür notwendige Technik kann ausschließlich im POP erfolgen und erfordert daher mehr Stellfläche des Netzanbieters. Diese Stellfläche ist bei der Standortwahl nur sekundär zu berücksichtigen.

4.2.3 Technische Merkmale

Die Räumlichkeiten zur Errichtung eines POP müssen folgende Bedingungen erfüllen:

- Lieferung, Aufstellung und Montage von 19" Standard-Schränken sowie die Kabelführung muss möglich sein (geschätzte Mindestraumhöhe ca. 2,6 m)
- · Geeignete Stromversorgung muss über einen eigenen Anschluss und Stromkreis erfolgen
- Ein geeignetes Klima (Temperatur, Luftfeuchte, ...) muss auch nachträglich herstellbar sein. Auf örtliche Gegebenheiten (Anrainer, ...) ist Rücksicht zu nehmen.
- Alle eingehenden Leerrohre müssen dem ODF von unten oder oben zugeführt werden.
- Alle ein- und ausgehenden Rohrverbünde und Rohre müssen gegen Gas- und Wassereindrang abgesichert sein.

Hinweis

Detaillierte Spezifikationen von Standard-POPs werden zu einem späteren Zeitpunkt hinzugefügt

4.2.4 Besondere Anforderungen

Der POP ist mit einem zentralen Schließsystem auszustatten. Die notwendigen Unterlagen sind von der nöGIG auf Anfrage erhältlich.

4.3 Faserverteiler

Faserverteiler liegen im Zugangsnetz zwischen POP und Teilnehmer. Hier werden die Feederkabel auf die Dropkabel gespleißt.

4.3.1 Standort

Ausgeführt werden die Faserverteiler entweder als unterirdischer Schacht oder als oberirdischer Verteilerschrank. In den Schächten werden Spleißmuffen platziert, in den Schränken werden spezielle Spleißmodule installiert.

Wichtig

Faserverteiler sind in der kostengünstigsten Variante zu planen. Faserverteiler an exponierten Stellen wie z.B. stark frequentierten Kreuzungen sind unterirdisch anzulegen. In sensiblen Bereichen ist auf das Ortsbild zu achten. In allen Fällen ist die Bauart mit dem regionalen Koordinator im Einzelfall abzustimmen und das Ergebnis protokolliert an die nöGIG zu übermitteln.

Bei der Auswahl des Standortes sind folgende, ungereihte Faktoren zu beachten:

- Technische Realisierbarkeit, allem voran die Entfernungen im Drop Bereich sowie die Nähe zum POP.
- Wirtschaftliche Optimierung in Bezug auf das zu errichtende Versorgungsgebiet. Unter diesen Aspekt fallen beispielsweise die Siedlungsstruktur des Versorgungsgebietes sowie natürliche (Flüsse, Wälder, ...) und technische Grenzen (Autobahnen, Zugtrassen, ...).
- Eignung und langfristige Verfügbarkeit
- Zufahrt und Parkmöglichkeit ohne grobe Verkehrsbehinderung zumindest mit PKW möglich
- Zugang für beauftragte Personen 7x24h möglich

4.3.2 Quantitative Merkmale

Faserverteiler sind auf die Größe des versorgten Gebietes und Beachtung der Reserven und zukünftigen Ausbauten auszulegen und nach wirtschaftlichen Aspekten zu optimieren. Faserverteiler können prinzipiell auch von mehreren Feederkabeln, jedoch immer nur von einem POP versorgt werden.

Hinweis

Typische Faserverteiler sind für 24, 48 oder 96 Mikrorohre ausgelegt. Entsprechend der Reservestrategie (20%) können damit 20, 40 oder 80 Nutzer mit Mikrorohren versorgt werden.

Die Anzahl der Fasern ergibt sich aus der Siedlungsstruktur. Der dafür benötigte Platzbedarf (z.B. 48 Mikrorohre x 4-Faser Drop-Kabel = 192 Fasern) ist entsprechend zu berücksichtigen. Ungenutzte Fasern der Drop-Kabel werden ungespleißt in den Spleiß-Kassetten abgelegt.

Jedes Drop-Kabel muss in einer Spleiß-Kassette enden. Enden mehrere Drop-Kabel in EINER Spleiß-Kassette, so sind geeignete Maßnahmen zur Strukturierung vorzusehen.

Bei geringerem Faserbedarf pro Faserverteiler kann ein Feederkabel auch mehrere Faserverteiler versorgen. Dabei werden die am jeweiligen Standort nicht benötigten Fasern ungeschnitten als sog. Loop zum nächsten Faserverteiler geführt.

4.3.3 Technische Merkmale Street Cabinet

- Material: Kunststoff oder Aluminium pulverbeschichtet
- Standard-Farbton ist RAL 7038 oder ähnlich und mit der Gemeinde abzustimmen.
- Schutzart IP 54
- Spleiß-Modul: Kapazität mindestens 192 Fasern
 48 Kassetten für je 4 oder 12 Kassetten für je 12 Spleiße
- Abmessungen entsprechend der benötigten Kapazität
- Rohreinführungen: mindestens 48 x 7 mm und 2 x 14 mm

4.3.4 Technische Merkmale Schacht

- Material: Kunststoff oder Beton
- Schachtabdeckung dem Einbauort angemessen in Schutzklasse B125 oder D400
- Empfohlene min. Abmessung Standardgröße: ca. 120 x 60 x 70 cm (L x B x T, Innenmaße)
- Empfohlene min. Abmessung kleine Variante: ca. 80 x 60 x 70 cm (LxBxT, Innenmaße)
- Bei Bedarf: teilbare Ausführung zum Einbau in bestehende Rohr-/Kabeltrassen

4.3.5 Haubenmuffe

- Dauerhaft gas- und wasserdicht bis 0,4 bar
- Kapazität ausgelegt für mindestens 192 Fasern
 48 Kassetten für je 4 oder 16 Kassetten für je 12 Spleiße
- Gel-Abdichtung (Kaltdichtung) f
 ür runde und ovale Ports
- Kabeleinführungsmöglichkeiten:
 48 Stück bis 3 mm (Dropkabel)
 - 2 Stück bis 9 mm (Feederkabel, in Loop-Variante)
- Optional: Einführungsmöglichkeiten für Mikrorohre: 48 Stück bis 7 mm
 - 2 Stück bis 14 mm
- Wandhalterung zur Montage der Muffe an der Schachtwand

4.3.6 Besondere Anforderungen

Faserverteiler sind mit einem zentralen Schließsystem auszustatten. Die notwendigen Unterlagen sind von der nöGIG auf Anfrage erhältlich.

Faserverteiler in einem Gebiet sind entsprechend der benötigten Kapazität vom gleichen Typ und Hersteller einzuplanen. Ausnahmen sind in Absprache möglich.

Faserverteiler dürfen ausschließlich die eindeutige ID und von der nöGIG genehmigte Beschriftungen führen.

4.4 Leerrohre

Bei der Neuverlegung im Zuge des Ausbaus und der Mitverlegung kommen erdverlegbare Mikrorohre zur Anwendung. Bei der Verwendung bereits bestehender Schutzrohre können dünnwandigere Mikrorohre eingesetzt werden.

4.4.1 Quantitative Merkmale

Die Leerrohre haben die Faserstrategie wie in Kapitel 4.5.1 dargestellt abzubilden.

Bei der Planung von Leerrohren ist zu berücksichtigen, dass die verschiedenen Leerrohrtypen aufgrund ihres Innendurchmessers nur Kabeltypen bis zu einer bestimmten Faseranzahl aufnehmen können. Die Ermittlung der notwendigen Anzahl Fasern erfolgt entsprechend der Faserstrategie.

Folgende Tabelle zeigt die heute gängige Kombination von Rohr und Kabel:

Тур	Kabeldurchmesser	Standardbelegung
14/10	3.0 – 8.0 mm	144 Fasern
		4 Fasern (Einfamilienhäuser)
7/4	1.0 – 2.7 mm	12 Fasern (Mehrfamilienhäuer)
		24 Faser (Sonderlösung)

Beim Rohrtyp 14/10 können bei besonderem Bedarf auch 192-fasrige Kabel verwendet werden. Diese entsprechen jedoch nicht dem Standard der meisten Lieferanten und sind daher nur als Sonderlösung anzusehen.

Bei der Planung von Leerrohren ist auf ein technisch sinnvolles und wirtschaftlich optimiertes Verhältnis von Schacht zu Einblaslänge zu achten.

Hinweis

In der Praxis haben sich Einblaslängen bis zu 400 m (in Ausnahmen auch 650 m) für 7/4 sowie bis zu 1000 m bei 14/10 als realistisch herausgestellt. Einblaslängen hängen insbesondere von folgenden Parametern ab: Planung, Temperatur und Luftfeuchte, Mikrorohr (Innenriefung), Einblastechnik und Erfahrung der Einblas-Trupps, Installations- und Verlegequalität, Kabeltype (Steifigkeit, Außenmantel).

4.4.2 Technische Merkmale

Leerrohrsysteme werden mit einer sehr langen Betriebszeit geplant und müssen dementsprechend hohen Qualitätsanforderungen genügen. Soweit nicht anders dargestellt gelten die Qualitätsanforderungen aus dem Planungsleitfaden des BMVIT. Aus diesem Grunde haben alle geplanten und gebauten Leerohrsysteme den folgenden Qualitätsrichtlinien zu entsprechen.

- Alle Leerrohre und Komponenten (z.B. Rohrverband, Mikrorohr, Verbinder) müssen zur direkten Erdverlegung geeignet sein.
- Material der Mikrorohre Polyethylen High Density (PE-HD)
- Zeitstandsfestigkeit nach DIN 8075 bzw. EN 921. Die UV-Stabilität hat mindestens zwei Jahre zu betragen (Prüfung nach ÖNORM EN ISO 4892-2 Verfahren A).
- Das Mantelrohr ist mittels Signierung in regelmäßigen Abständen zu kennzeichnen und enthält Herstellerkennzeichnung

Rohrtypbezeichnung

Fertigungsdatum

Metrierung

- Festes Mantelrohr, welches eine Verschiebung der Mikrorohre verhindert.
- Mikrorohre mit spezieller Innenriefung zum Einblasen von LWL-Kabeln.
- Farben der Mikrorohre nach IEC 60304 entsprechend Vorgabe Farbkodierung
- Mantelfarbe Orange, vergleichbar RAL 2003

Das Warnband hat die Aufschrift "Glasfaserkabel - nöGIG".

4.4.3 Technische Merkmale Rohr-Zubehör

Leerrohrsysteme sind mit Doppelsteckmuffen, Endkappen und Abdichtungen für den Übergang Rohr-Kabel zu planen, zu montieren und zu schützen. Die Komponenten müssen dem erforderlichen Einblasdruck bei Einbringung der LWL-Kabel standhalten können.

Es gelten folgende verbindlichen Qualitätsmerkmale

- Steckmuffen müssen die Norm DIN EN 50411-2-8 erfüllen.
 Für Endkappen gilt die Norm sinngemäß.
- Alle Komponenten müssen zur direkten Erdverlegung geeignet sein.
- Gas- und Wasserdichtigkeit bis 0,5 bar.
- Druckdichte: 15 bar über 30 Minuten.
- Geeignet zur permanenten Montage, im Bedarfsfall wieder lösbar. Sicherheitsfunktion zum Schutz vor unbeabsichtigtem Lösen.
- Mehrfachabdichtungen zum Abdichten der Einzelröhrchen gegen die Ummantelung werden nicht verwendet.

Wichtig

Leerrohrsysteme sind zu jeder Zeit vor dem Eindringen von Wasser und Schmutz zu schützen und offene Rohrenden zu verschließen. Dies gilt beim Transport, bei der Lagerung am Bauplatz als auch bei der Verlegung im Graben.

Die Rohre sind dauerhaft mit druckdichten Endkappen im POP, Schächten, Faserverteiler, beim Hausanschluss in der entsprechenden Größe fachgerecht und laut Herstellerangaben zu verschließen. Transport- oder Schrumpfkappen oder andere Behelfe sind nicht zulässig.

4.4.4 Einbau von Leerrohren im Tiefbau

Sofern nicht, durch Sondernutzungsverträge oder Vereinbarungen mit weiteren Einbauten Trägern, andere Mindestüberdeckungen, Künetten Tiefen und Breiten, Mindestabstände zu anderen Einbauten oder Ähnliches vereinbart werden, sind die im "Planungsleitfaden Breitband" des BMVIT angegebenen Empfehlungen, bezüglich dem "Einbau von Leerrohren" (Seite 42, Kapitel B.4), an zu wenden.

4.4.5 Leerrohren in Brücken

Unterirdische Querungen von Gewässern oder Tälern sind Brückenquerungen vorzuziehen.

Bei technisch und wirtschaftlich sinnvollen Brückenquerungen ist die Kabelführung innerhalb eines Schutzrohres seitlich der Brücke einzuplanen. Bei Flussquerungen auf der flussabwärts zugewandten Seite.

An jedem Brückenkopf ist ein Schacht für die zusätzliche Ablage von Fasern einzuplanen. Die Länge der Fasern in jedem Schacht ergibt sich aus der Entfernung der beiden Schächte plus entsprechender Reserve. Im Minimum jedoch 10m. Die Schächte sind so zu positionieren, dass diese bei späteren Brückenarbeiten nicht im Arbeitsbereich sind (Mindestabstand 2m zur Seite und nach Hinten).

Im ausschließlichen Drop-Bereich sind in der Regel keine Schächte einzuplanen.

4.4.6 Backhaul

Leerrohre und Kabel im Backhaul-Bereich verbinden den POP (Ortszentrale) mit den Backbone-Netzen übergeordneter Netzanbieter. Sie stellen die zentrale Anbindung des Netzes an die weltweiten Kommunikationsnetze dar.

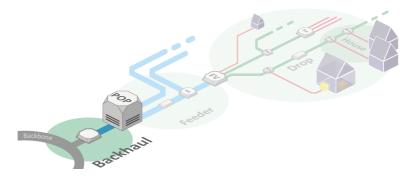


Abb. 6 - Backhaul Gebiet

Empfehlung

Wenn die Netzplanung es möglich macht, sollte eine redundante (mehrfache) Kabelführung eingeplant werden, die auch andere POPs/Cluster berücksichtigt.

Leerrohrverbände sind wie folgt zu planen:

Туре	Beschreibung	Reserven	Schema
RV7x14	7 Mikrorohre vom Typ 14/10 Außen-Ø ca. 43 mm Zugkraft <2200 N	2	
RV4x14	4 Mikrorohre vom Typ 14/10 Außen-Ø ca. 30 mm Zugkraft <1300 N	1	88
RV2x14	2 Mikrorohre vom Typ 14/10 Außen-Ø ca. 30 mm Zugkraft <650 N	0	00
MR1x14	1 Mikrorohre vom Typ 14/10 Außen-Ø ca. 10 mm Zugkraft <350 N	0	0

- Bei Verfügbarkeit bestehender Kabelschutzrohre vom Typ DA 50, DA 110 oder ähnliche können die Leerrohrverbände auch darin eingebracht werden.
- Die Mantelfarbe ist bei allen neuen Leerrohren Orange.
- Die Mikrorohre sind nach dem Standard IEC 60304 farblich zu kennzeichnen.

Bei Verfügbarkeit bestehender Kabelschutzrohre vom Typ DA 50, DA 110 oder ähnliche können die Leerrohrverbände auch darin eingebracht werden.

4.4.7 Feeder-Bereich

Feederkabel sind höherfaserige Kabel, die vom POP zu einem oder mehreren Faserverteilern verlaufen. Die Anforderungen an die Leer-Verrohrung sind vergleichbar mit jenen im Backhaul-Bereich.

Abb. 7 - Feeder Gebiet

Leerrohrverbände sind wie folgt zu planen:

Туре	Beschreibung	Reserven	Schema
RV7x14	7 Mikrorohre vom Typ 14/10 Außen-Ø ca. 43 mm Zugkraft <2200 N	2	
RV4x14	4 Mikrorohre vom Typ 14/10 Außen-Ø ca. 30 mm Zugkraft <1300 N	1	88
RV2x14	2 Mikrorohre vom Typ 14/10 Außen-Ø ca. 30 mm Zugkraft <650 N	0	00
MR1x14	1 Mikrorohre vom Typ 14/10 Außen-Ø ca. 14 mm Zugkraft <350 N	0	0

• Die Mantelfarbe ist bei allen neuen Leerrohren Orange.

Optional kann das zentrale 14 mm Mikrorohr aus dem Rohrverband RV24x7+1x14 eingesetzt werden.

4.4.8 Drop-Bereich

Die Dropkabel verlaufen vom Faserverteiler bis zu den Hausanschlüssen. In den Haupttrassen im öffentlichen Grund werden die Kabel in Rohrverbänden geführt. Vor dem Gebäude wird eine Abzweigung aus dem Rohrverband mittels Steckmuffe und Einzelrohr gemacht. Das Einzelrohr wird dann im privaten Grund ans oder ins Gebäude geführt. Alle Komponenten müssen dabei erdverlegbar sein.

Überzählige Fasern in einem LWL-Kabel sind als Faserreserve anzusehen.

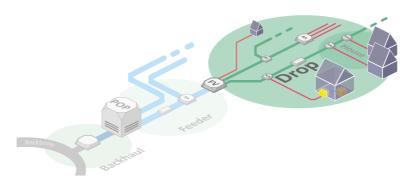


Abb. 8 - Drop Gebiet

Leerrohrverbände sind wie folgt zu planen:

Туре	Beschreibung	Reserven	Schema
RV24x7+1x14	24 Mikrorohre vom Typ 7/4 plus 1 Mikrorohr vom Typ 14/10 Außen-Ø ca. 45 mm Zugkraft <4600 N	4	
RV12x7	12 Mikrorohre vom Typ 7/4 Außen-Ø ca. 30 mm Zugkraft <2100 N	2	

- Mantelfarbe: ORANGE.
- Mantelfarbe parallel geführten zweiten Rohrverbund: GRÜN (gilt nur für RV24x7+1x14)

Optional kann das zentrale 14 mm Mikrorohr aus dem Rohrverband RV24x7+1x14 eingesetzt werden.

4.4.9 Hausanschluss

Leerrohre für den Hausanschluss sind Teil des Drop-Bereichs und führen von einem Mikrorohr im Trassen-Rohrverband über das Gebäudegrundstück in das Gebäude.

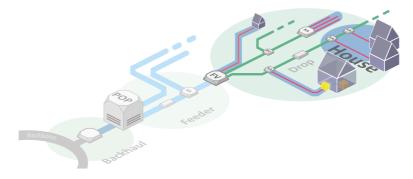


Abb. 9 – Hausanschluss-Gebiet als Teil des Drop

Je nach Anforderung und Größe des Gebäudes sind die folgenden Mikrorohre einzuplanen:

Туре	Beschreibung	Reserven	Schema
MR1x7	1 Mikrorohr vom Typ 7/4 Außen-Ø ca. 7 mm Zugkraft <200 N	0	0
MR1x14	1 Mikrorohr vom Typ 14/10 Außen-Ø ca. 14 mm Zugkraft <350 N	0	0

Wichtig

Das Mikrorohr für den Hausanschluss muss am Ende mit der Nummer und der Farbe des abzweigenden Mikrorohrs im Rohrverband gekennzeichnet werden.

Hinweis

Bestehende Leerverrohrungen im Hausanschlussbereich mit anderen Dimensionierungen können weiterhin verwendet werden. Diese sind gegebenenfalls mittels Reduziermuffen mit den neueren Mikrorohren in der Längstrasse zu verbunden

4.5 LWL-Kabel

LWL-Kabel schützen die empfindlichen Glasfasern vor Umwelteinflüssen. Alle eingesetzten Kabel müssen für den Außenbereich geeignet sein.

4.5.1 Quantitative Merkmale

Als Glasfasernetz für Niederösterreich ist ein Punkt-zu-Punkt-Netz geplant. Das bedeutet, dass jeder Anschluss eine oder mehrere dedizierte LWL-Fasern vom Anschluss bis in den POP bekommt. Die Faserstrategie lautet:

- Pro Wohn- oder Geschäftseinheit sind 2 Fasern einzuplanen.
 Pro Gebäude ist eine zusätzliche Faser vorzusehen.
- Pro (größerem) Unternehmen sind 12 Fasern einzuplanen und daher ein Kabel mit 12 Fasern vorzusehen (als Richtwert ein Unternehmen ≥100 Mitarbeitern).
- Mit heutigem Stand sind pro Einheit oder Unternehmen 2 Fasern zu spleißen und die restlichen im Faserverteiler abzulegen.
- Es sind Kabeln mit 4, 12 oder 24 Fasern einzusetzen. Die Auswahl der Kabel erfolgt auf wirtschaftlicher Basis in einer Gesamtbetrachtung und unter Beachtung der technischen Möglichkeiten (z.B. mögliche Distanzen bei 24-Faser Kabel und 7/4 Mikrorohr).

Eine Übersicht der benötigten Fasern pro Wohn- oder Geschäftseinheit sieht folgendermaßen aus:

Einheiten	Fasern	Faser Gebäude	Fasern gesamt	Kabeltyp	gespleißte Fasern
1	2	1	3	4-fach	2
2	4	1	5	12-fach	4
3	6	1	7	12-fach	6
4	8	1	9	12-fach	8
5	10	1	11	12-fach	10
6	12	1	13	2 x 12-fach	12
7	14	1	15	2 x 12-fach	14
8	16	1	17	2 x 12-fach	16
9	18	1	19	2 x 12-fach	18
10	20	1	21	2 x 12-fach	20
11	22	1	23	2 x 12-fach	22
>= 12	>= 24	1	>= 25	Sonderlösung	Sonderlösung
			•••		

Hinweis

In der Praxis haben sich im Ortsbereich Einblaslängen von maximal 500 m bewährt. Unter idealen Bedingungen sind auch deutlich längere Strecken (bis zu 1.000 m) möglich. Allgemein gilt: Je geringer der Spielraum des Kabeldurchmessers zum Leerrohrinnendurchmesser ist, desto kürzer die Einblasweite.

4.5.2 Technische Merkmale

Es kommen ausschließlich Singlemodefasern der Spezifikation G.657.A1 oder G.657.A2 zur Verwendung. Diese zeichnen sich durch einen geringeren Biegeradius aus und sind somit weniger störanfällig. Dieser Fasertyp ist kompatibel und spleißbar mit dem Typ G.652.D.

LWL-Kabel werden mit einer sehr langen Betriebszeit geplant und müssen dauerhaft eine hohe Zuverlässigkeit gewährleisten. Zukünftig sind immer größere Bandbreiten zu erbringen. Qualitätsschwankungen und Störungen können sich direkt auf die Nutzbarkeit durch den Kunden auswirken.

Alle geplanten und verbauten LWL-Kabel haben folgenden Qualitätsrichtlinien zu entsprechen:

- Single Mode Fasern der Spezifikation G.657.A1 oder G.657.A2
- Die Kabelart entspricht einem Außenkabel. Innenkabel sind nicht zugelassen.
- Geeignet zum Einblasen in Mikrorohre vom Typ 14/10 oder 7/4
- Halogenfreiheit des Mantelmaterials
- Dämpfung gemäß G.657.A1, G.657.A2
- Farbcode der Faserbündel und der Einzelfasern nach IEC 60304

4.5.3 Backhaul

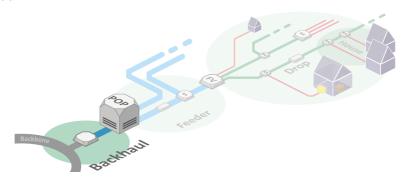


Abb. 10 - Backhaul Gebiet

Die Dimension der Kabel beträgt 144 Fasern.

Empfehlung

Wenn die Netzplanung es möglich macht, sollte eine redundante (mehrfache) Kabelführung eingeplant werden, die auch andere POPs/Cluster berücksichtigt.

4.5.4 Feeder-Bereich

Feederkabel sind höherfaserige Kabel, die vom POP zu einem oder mehreren Faserverteilern verlaufen. Die Anforderungen an Kabeltypen und Entfernungen sind vergleichbar mit jenen im Backhaul-Bereich.

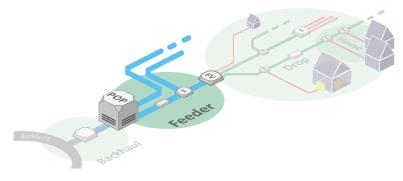


Abb. 11 - Feeder Gebiet

Die Dimension der Kabel beträgt 144 oder 192 Fasern.

4.5.5 Drop-Bereich

Die Dropkabel verlaufen vom Faserverteiler bis zu den Hausanschlüssen. In den Haupttrassen im öffentlichen Grund werden die Kabel in Rohrverbänden geführt. Vor dem Gebäude wird eine Abzweigung aus dem Rohrverband mittels Steckmuffe und Einzelrohr gemacht. Das Einzelrohr wird dann im privaten Grund ans oder ins Gebäude geführt. Alle Komponenten müssen dabei erdverlegbar sein.

Überzählige Fasern in einem LWL-Kabel sind als Faserreserve anzusehen.

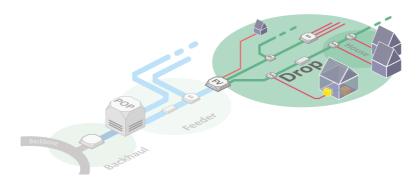


Abb. 12 - Drop Gebiet

Die Dimension der Kabel beträgt 4, 12 oder 24 Fasern.

4.6 Redundanzen

Redundanzen erhöhen die Verfügbarkeit des Netzes erheblich, da sie bei eventuellen Störungen eines Netzsegmentes alternative Netzführungen anbieten.

Wegeredundanzen sind bei Backhaul-Leitungen verpflichtend und unter Beachtung der wirtschaftlichen und technischen Aspekte einzuplanen.

Bei der Versorgung von Wohn- und Geschäftseinheiten sind im Feeder- und Drop-Bereich keine Redundanzen einzuplanen.

Bei der Versorgung eines Gebietes mit mehreren Unternehmen (z.B. Industriepark) ist eine Wegeredundanz im Feeder- und Drop-Bereich einzuplanen und mit dem regionalen Koordinator abzustimmen.

In besonderen Fällen und in Abstimmung (Beauftragung) von Unternehmen kann eine Wegeredundanz zusätzlich errichtet werden. Die Information wird vom regionalen Koordinator bereitgestellt.

4.7 Gebäudeeinführungspunkt / Hausanschlusskasten

Im Gebäudeeinführungspunkt (BEP = Building Entry Point), auch als Hausanschlusskasten (HAK) bezeichnet, endet das Dropkabel. Der BEP bildet somit den Übergang vom Dropbereich zum Innenbereich.

Hinweis

Die verschiedenen Varianten in der Ausführung in Kapitel 5 beschrieben.

Grundsätzlich müssen zwei Szenarien unterschieden werden:

- 1. Einfamilienhaus. Hier ist der BEP im Idealfall gleichzeitig die FTU, die als Unterteil eines späteren ONT dient. In diesem Fall werden die Drop-Fasern auf Pigtails gespleißt, so dass ein patchbarer Übergabepunkt entsteht.
- 2. Mehrfamilienhaus. Hier werden die Dropfasern im BEP später auf die Innenkabel gespleißt, die dann zu den einzelnen Wohnungen verlegt werden. In diesem Fall enden die Dropfasern zunächst ungespleißt in einer Kassette im BEP.

4.7.1 Technische Merkmale für BEP bei Mehrfamilienhaus

	BEP, Größe 1	BEP, Größe 2
Spleißmöglichkeit, Fasern	12	24
Anbringung von Kupplungen für SC-APC Stecker	12	24
Einzuführende Kabel	6	13
Schutzklasse	IP 54	

Hinweis

Die technischen Merkmale für den BEP als FTU sind abhängig vom Modell des geplanten ONT und stehen in direkter Abhängigkeit zum späteren Netzbetreiber.

4.7.2 Besondere Anforderungen

Ein BEP in allgemeinen Bereichen ist mit einem zentralen Schließsystem auszustatten. Die notwendigen Unterlagen sind von der nöGIG auf Anfrage erhältlich.

BEPs dürfen ausschließlich die eindeutige ID und von der nöGIG genehmigte Beschriftungen führen.

4.8 Optische Verbindungen

4.8.1 Faser-Spleiße

Folgende Spleiße werden durchgeführt.

- · Pro Wohn- oder Gewerbeeinheit werden zwei Fasern vom POP bis zum Hausanschluss durchgespleißt.
- Reserve- und überzählige Fasern werden auf den Kassetten ungespleißt, bzw. auf dafür vorgesehenen Faserführungen und Fächern für Überlängen, abgelegt.
- In den Muffen wird jedes Hausanschlusskabel, bzw. jede Adresse auf eine eigene Kassette geführt.
- Im ODF werden alle Fasern gespleißt.

4.8.1.1 Technische Anforderungen für Spleiße

- Die Dämpfung bei Spleißen darf max. 0,10 dB betragen
- Die Rückflussdämpfung muss mind. 60 dB betragen
- Als Spleißschutz werden Schrumpf- oder Crimp-Spleißschutze verwendet
- Werden Spleißarbeiten an einem Schacht vorgenommen, so müssen diese in einem Zelt oder unter einer Bedachung bzw. in einem Fahrzeug stattfinden
- Die Temperaturuntergrenze zur Ausführung von thermischen Spleißen liegt bei -3° C.

4.8.2 Steckverbindungen

An den nachfolgenden Stellen im Feeder- und Drop-Bereich sind Stecker als Pigtail anzuspleißen

- Im POP innerhalb des ODFs
- An der FTU im Kundengebäude

Es werden generell Stecker vom Typ SC-APC verwendet. Dieser in der Farbe Grün ausgeführte Stecker hat einen 8 Grad Winkelschliff und bietet gute Dämpfungseigenschaften.

Technische Anforderungen LWL-Stecker:

- Dämpfung max. 0,25 dB
- Rückflussdämpfung mind. 85 dB
- Mind. 1000 Steckzyklen

4.9 Allgemeine Planungsvorgaben

4.9.1 Dateiformate

Für den Austausch von Dateien sind folgende Formate einzuhalten.

Dateityp	Formatdefinition
Zeichnungen	DWG Format, lesbar mit AutoCAD 2010 oder jünger
Dokumente	DOC Format, lesbar mit Microsoft Word 2010 oder jünger
Tabellen	XLS Format, lesbar mit Microsoft Excel 2010 oder jünger
Photos	JPG
Illustrationen	EPS (in Ausnahme auch PNG)

4.9.2 Layer

Eine einheitliche Layer Struktur erleichtert den Austausch der Dateien.

Hinweis

Eine einheitliche Layer-Struktur wird ergänzt.

Hauseinführungen 41

5 Hauseinführungen

Die Erschließung der Gebäude erfolgt über das Grundstück mittels einem oder mehreren Mikrorohren, die in der Regel aus einem Rohrverband abzweigen. Dazu wird eine Mauerdurchführung geschaffen, durch die das Mikrorohr in das Gebäudeinnere geführt wird.

Gebäudeanschlüsse können nach verschiedenen Methoden realisiert oder vorbereitet werden. Entscheidend für die Planung ist der Anschlusszeitpunkt. Der Anschlusszeitpunkt beschreibt den Zeitpunkt an dem ein Anschluss bis in das Gebäude realisiert wird.

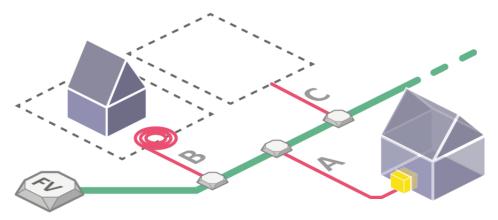


Abb. 13 - Anschlusszeitpunkte

- A Anschlüsse mit einem sofortigen Anschlusszeitpunkt, werden möglichst im Rahmen der Gesamtbaumaßnahme mit dem notwendigen Mikrorohr und der entsprechenden Faserzahl versorgt. Voraussetzung ist der bestehende Versorgungsvertrag. Der Gebäudereport gibt Auskunft über die Lage der Hauseinführung.
- Anschlüsse mit einem Anschlusszeitpunkt innerhalb von 6 Monaten nach dem Trassenbau erhalten eine vorbereitende Ablage im Bereich der Grundstücksgrenze. Diese Ablage erhält eine Mikrorohrreserve, die für den späteren Anschluss ausreichend sein sollte. Die Ablage des Mikrorohrrings ist unter- oder oberirdisch vorzunehmen. Die Ablage ist vor Zugriff durch Dritte (Vandalismus) und Beschädigung zu schützen. Zu jeder Zeit ist die Bausicherheit der Ablage zu gewährleisten.
- C Anschlüsse mit einem Anschlusszeitpunkt später als sechs Monate oder ohne bekannten Anschlusszeitpunkt (kein Vertrag, Baulücken, Gebäude ohne Nutzung, zukünftige Baugrundstücke) erhalten einen Abzweig bis zur Grundstücksgrenze und einer Reserve, die dem erwartetem Standpunkt des Gebäudes inkl. einer ausreichenden Länge für die Einführung ins Haus. Das Mikrorohrende ist fachgerecht zu verschließen und unterirdisch an der Grundstückgrenze abzulegen. Eine Ablage unterhalb geschlossener Oberflächen (z.B. Asphalt, Pflaster) ist zu vermeiden. Der Ablageort ist zu dokumentieren und zur Planfortführung zu melden.

Hinweis

Es ist zu beachten, dass alle Maßnahmen so durchgeführt werden, dass zu einem späteren Zeitpunkt keine Beschädigungen / Baumaßnahmen am Gehweg notwendig sind.

5.1 Konzepte für Hauseinführungen

Die Erschließung der Häuser erfolgt mittels einem oder mehreren Mikrorohre. Die Einführung in die Gebäude kann unter- oder oberirdisch erfolgen und ist vor allem abhängig von der vorhandenen Bausubstanz.

Hauseinführungen 42

Empfehlung

Hauseinführungen sind bevorzugt unterirdisch zu realisieren, um Schutz gegen Beschädigung und Vandalismus zu bieten.

Wichtig

Alle Biegeradien sind entsprechend der Spezifikation zu berücksichtigen!

5.1.1 Unterirdische Einführung

Abb. 14 - Unterirdisch in Keller oder EG

Für die unterirdische Einführung wird an der Hausmauer ein Kopfloch gesetzt. Innerhalb des Kopfloches wird eine Wandbohrung vorgenommen, die die Durchführung des Mikrorohres erlaubt. Bei Gebäuden ohne Keller oder wenn der Durchbruch ins EG notwendig ist, so wird der Durchbruch mit einer Schrägbohrung aus dem Gebäudeinneren durchgeführt.

Die Hauseinführung wird mit einem entsprechenden Hauseinführungssatz vorgenommen.

Wichtig

Bei unterirdischen Einführungen ist insbesondere auf einen gas- und wasserdichten Abschluss (0,5 bar) zu achten.

5.1.2 Oberirdische Einführung

Abb. 15 – Oberirdisch auf oder unter Putz inkl. BEP

Bei der oberirdischen Installation wird das Mikrorohr vor dem Haus hochgeführt und außer- oder innerhalb der Mauer bzw. der Wärmedämmung im Hausanschlusskasten beendet. Üblicherweise erfolgt hier der Spleiß von Außen- zu Innenkabel und es wird nur mehr das Innenkabel über einen Hauseinführungssatz ins Gebäudeinnere geleitet.

Speziell bei der Installation mit Aussenkasten sind Kabel und Spleiß vor Umwelteinflüssen (UV-Strahlung, ...) und Vandalismus zu schützen. In der Unterputzvariante sind Aussparung und Fassadenschlitz fachgerecht zu verputzen.

Hauseinführungen 43

5.2 Gebäudeeinführungspunkt (BEP)

Die Übergabe des passiven Netzes an den aktiven Netzbetreiber erfolgt im Gebäudeeinführungspunkt (BEP, Building Entry Point) und findet in der Regel im Hausanschlusskasten statt.

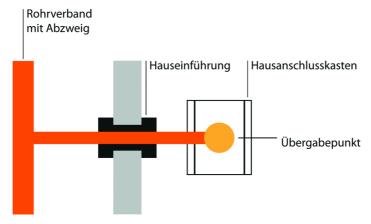


Abb. 16 – Gebäudeeinführungspunkt (Darstellung Geo-Data)

Ist ein Betreiber des Netzes bei Installation des HAK bekannt, so kann dieser bereits bei der Erstinstallation ersetzt werden durch einen Sockelteil des späteren aktiven Netzabschlusses (ONT). Dieser Sockel ist bezeichnet als FTU (Fiber Termination Unit) und beinhaltet in der Regel eine Spleißkassette mit entsprechenden SC/APC Steckverbinder zur späteren Aufnahme des ONT.

Die Dropkabel werden zum BEP geführt, der nahe der Hauseinführung montiert wird.

Folgende Maßgaben sind zu beachten:

Die Planungslänge innerhalb der Gebäude beträgt fünf Meter je Rohr und Gebäude.

Gebäude werden separat angeschlossen, d.h. jede Adresse bekommt eine eigene Hauseinführung und eine eigene Abschlusseinrichtung.

Hinweis

Für sämtliche Bau- und Installationsmaßnahmen einer Innenverkabelung ist der Gebäudebesitzer verantwortlich. Die Verantwortung der nöGIG endet am Übergabepunkt mit der FTU.

5.3 Gebäudebegehungen

Wird in einem Ausbaugebiet ein FTTH Netz oder bei einer Mitverlegung einzelne Gebäudeanschlüsse errichtet, ist eine Erhebung von Detailinformationen zu jedem Gebäude notwendig. Diese wird typischerweise mit einer Begehung jedes anzuschließenden Gebäudes durch das ausführenden Unternehmen gemeinsam mit dem Gebäudeeigentümer durchgeführt. Folgende Informationen werden erhoben und dokumentiert:

- · Festlegung der Anschlusstrasse und Bauweise
- Festlegung der Hauseinführung (Ort, Typ)
- Festlegen des BEP Standorts
- Definition der Verantwortlichen (bauseitig und gebäudeseitig)
- Zeitplan für die Einbaumaßnahmen

6 Bezeichnungen

Das Kapitel definiert die Bezeichnungen (IDs, Labels) der im Rahmen der Planung und Errichtung einer Glasfaser-Infrastruktur benötigten Elemente und Schnittstellen (Objekte). Diese Bezeichnungen kommen in folgenden Fällen zur Anwendung:

- Bezeichnung physischer Elemente vor Ort
- Bezeichnung von Objekten in logischen Abläufen
- Bezeichnungen in Plänen und Systemen (insbesondere FAM)

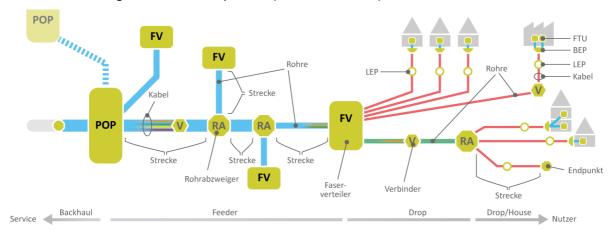


Abb. 17 - Übersicht der Objekte

Wichtig

Jedes Objekt erhält eine eindeutige, globale Bezeichnung. Diese setzt sich aus einer regionalen sowie einer lokal eindeutigen Kennung zusammen. Die regionale Kennung wird von der nöGIG zentral vorgegeben und ist über den POP definiert. Die lokale Kennung obliegt dem verantwortlichen Planungsunternehmen.

Sind für ein Gebiet mehrere Unternehmen gleichzeitig beauftragt, so übernimmt ein Unternehmen die zentrale Verantwortung für die Erstellung eindeutiger lokaler Kennungen!

6.1.1 Allgemeine Begriffe

Für das Verständnis der Benennungen sind nachfolgende Begriffe definiert:

Verbindung Jeder Hausanschluss ist mit einer Punkt-zu-Punkt Verbindung mit dem POP und weiter mit dem

Internet verbunden. Die Verbindung ist in dieser Betrachtung eine gedankliche Punkt-zu-Punkt

Linie als Teil des gesamten Netzes.

Knoten Jedes aktive oder passive Element.

Abzweiger Ein Element, dass sich dadurch kennzeichnet, dass es Verbindungen teilt, vereint, umformt,

umgruppiert oder beendet. Lose Enden von Rohren, Kabeln und Fasern gehören in dieser

Betrachtung ebenfalls zu Abzweigern.

übergeordnet der, ausgehend vom betrachteten Element in Richtung "Service" nächstgelegene

Faserverteiler oder POP.

6.1.2 Nomenklatur

Die dezentrale Vergabe eindeutiger, globaler IDs erzwingt die Anwendung eines Regelwerkes. Die Abbildung der IDs folgt dabei einem einfachen Muster. Für die Musterdarstellung wird folgende Nomenklatur vereinbart.

A-Z Großbuchstaben definieren das Objekt.

zzz Platzhalter für Buchstaben und Ziffern, erlaubt sind ausschließlich Großbuchstaben.

nnn Platzhalter für Ziffern, Leerstellen sind mit 0 (Ziffer Null) aufzufüllen.

? Zeichen aus einem limitierten Zeichensatz, je nach Objekt.

6.1.3 Übersicht der Objekte

Der Aufbau eines FTTH Netzes besitzt die Merkmale einer Baumstruktur bzw. einem Graphen (mathematisch). Dementsprechend unterteilen wir die Elemente in Knoten und deren Verbindungen (Rohre, Kabel) zueinander. Zur Abbildung der funktionalen und technischen Objekte des FTTH Netzes auf die Ausführung werden diese um Strecken (Trajekte) und Streckenknoten (Trajektknoten) ergänzt.

6.2 Knotenobjekte

Knotenobjekte erfüllen eine unmittelbare Funktion im FTTH Netz oder sind für die bauliche Ausführung notwendig.

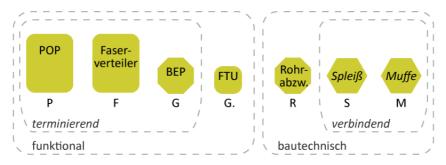


Abb. 18 - Knotenobjekte

Eine Übersicht aller Knotenobjekte und der zugeordneten Muster ist hier dargestellt.

Label	Bezeichnung
Pzzzzz	Ortszentrale (POP)
Fnn	Faserverteiler
Ann	Rohrabzweiger
Mnn	Rohrverbinder (Muffe)
Lnn	Kabelverbinder (LWL-Spleiß)
Ennn	Endpunkte (vorläufiger Terminierungspunkt)
Gnnn	Gebäudeeinführungspunkt (BEP)
Gnnn.nn	Faserterminierungspunkt (FTU)
Unnn	Grundstücksübergabepunkt (LEP)
Tnnn.nn	Strecke (Trajekt) mit Segmentnummern
Tnnn-?nn	Streckenknoten mit Kodierung der Bauausführung.

6.2.1 Ortszentrale (POP)

Aus der Bezeichnung des POP leiten sich die regionalen Bezeichnungen aller, diesem POP logisch zugehörigen Elemente ab. Jeder POP im Einflussgebiet der nöGIG erhält daher eine global eindeutige Kennung. Diese Kennung wird zentral von der nöGIG zur Verfügung gestellt und ist verpflichtend zu verwenden.

- Ein POP besitzt eine global eindeutige ID.
- Alle Elemente erhalten als Präfix die Kennung des POP.
- Ein POP besitzt die geographischen Merkmale eines Punktes.

6.2.2 **Bezeichnung**

Die Kennung eines POPs wird zentral vergeben und folgt dem Muster

PzzzzzzEindeutige, 6-stellige Kennung mit regionaler Pzzzzzz

Zuordnung.

6.2.3 **Planebene**

POPs werden in der Planebene Feeder hinterlegt.

Hinweis

Der POP kennzeichnet das Gebiet aus Sicht eines FTTH Netzes. Diese Ansicht muss nicht mit einem eindeutig abgegrenzten geographischen Gebiet übereinstimmen.

6.2.4 **Faserverteiler**

Faserverteiler arrangieren die Glasfasern vom POP auf die Fasern zum Kunden (Gebäudeeinführungskabel). Faserverteiler sind im Allgemeinen jeweils einem POP zugeordnet.

- Ein Faserverteiler besitzt eine global eindeutige ID.
- Alle Elemente erhalten als Präfix die Kennung des POP.
- Ein Faserverteiler besitzt die geographischen Merkmale eines Punktes.

6.2.4.1 Bezeichnung

Die Bezeichnungen für Faserverteiler werden vom verantwortlichen Planungsbüro vergeben. Für die Bezeichnung ist folgendes Muster anzuwenden:

```
...-Fnn
```

Die globale Bezeichnung entsteht durch den POP als Präfix.

```
Pzzzzzz-Fnn?
```

6.2.4.2 **Planebene**

Faserverteiler werden in der Planebene Feeder hinterlegt.

Ist ein Faserverteiler mehr als einem POP zugeordnet, dann gilt die Kennung des primären POP.

6.2.5 Rohrabzweiger

Funktional zweigen in diesem Element ein oder mehrere Rohre von einem Rohrverbund ab. Im Idealfall können damit Kabel ohne Spleiß durchgezogen werden.

- Ein Rohrverteiler besitzt eine global eindeutige ID.
- Alle Elemente erhalten als Präfix die Kennung des übergeordneten POP bzw. Faserverteilers.
- Der Typ des Rohrverteilers ist in der Kennung zu verwenden

• Ein Rohrverteiler besitzt die geographischen Merkmale eines Punktes.

6.2.5.1 Bezeichnung

Die Bezeichnungen für Rohrverteiler werden vom zuständigen Planungsbüro vergeben. Für die Bezeichnung ist folgendes Muster anzuwenden:

```
...-Ann
```

Rohrverteiler im Feeder-Bereich erhalten den Präfix des zugehörigen POP:

```
Pzzzzzz-Ann
```

Rohrverteiler im Drop-Bereich erhalten den Präfix des zugehörigen Faserverteilers:

```
Pzzzzz-Fnn-Ann
```

6.2.6 Rohrverbinder (Muffe)

Rohrverbinder dienen zur unmittelbaren 1:1 Verbindung zweier Rohre (Muffen). Diese Verbinder kommen beispielsweise bei Materialtausch oder auch Bruch eines Leerrohres zum Einsatz.

- Ein Verbinder besitzt eine global eindeutige ID.
- Alle Elemente erhalten als Präfix die Kennung des übergeordneten POP bzw. Faserverteilers.
- Ein Verbinder besitzt die geographischen Merkmale eines Punktes

6.2.6.1 Bezeichnung

Die allgemeine Kennung für Rohr-Verbinder lautet:

```
...-Mnn
```

Verbinder im Feeder-Bereich (zwischen POP und Faserverteiler) erhalten den Präfix des POP:

```
Pzzzzzz-Mnn
```

Verbinder im Drop-Bereich (zwischen Faserverteiler und Hausanschluss) erhalten als Präfix den Faserverteiler:

```
Pzzzzz-Fnn-Mnn
```

6.2.7 Kabelverbinder (Spleiß)

Im Element Kabelverbinder werden die einzelnen Fasern der eingehenden Kabel mit denen der ausgehenden Kabel verbunden (Spleiß). Im Allgemeinen ist somit auch das Rohr erneut mechanisch verbunden.

- Ein Kabelverbinder besitzt eine global eindeutige ID.
- Alle Elemente erhalten als Präfix die Kennung des übergeordneten POP bzw. Faserverteilers.
- Ein Verbinder besitzt die geographischen Merkmale eines Punktes

6.2.7.1 Bezeichnung

Die allgemeine Kennung für Kabel-Verbinder lautet:

```
...-Lnn
```

Verbinder im Feeder-Bereich erhalten den Präfix des übergeordneten POP:

```
Pzzzzzz-Lnn
```

Verbinder im Drop-Bereich erhalten als Präfix den übergeordneten Faserverteiler:

```
Pzzzzz-Fnn-Lnn
```

6.2.8 Endpunkte

Als Endpunkte werden jene Knoten bezeichnet, an denen ein Rohr und oder Kabel ohne spezielle Funktion endet. Ein derartiger Endpunkt ist beispielsweise das lose Ende eines Rohres an einem unbebauten Grundstück oder die vorläufigen Terminierungspunkte beim Mitverlegen eines Straßenzuges.

- Ein Endpunkt besitzt eine global eindeutige ID.
- Alle Elemente erhalten als Präfix die Kennung des übergeordneten POP bzw. Faserverteilers.

• Ein Verbinder besitzt die geographischen Merkmale eines Punktes

Ein Endpunkt kann als vorläufige Terminierung eines Rohres oder Kabels betrachtet werden.

6.2.8.1 Bezeichnung

Die allgemeine Kennung für Endpunkte lautet:

```
...-Enn
```

Die 2-stellige Ziffernfolge kann bei zwingendem Bedarf um jeweils eine Stelle erweitert werden.

Endpunkte im Feeder-Bereicherhalten den POP als Präfix:

```
Pzzzzzz-Enn
```

Endpunkte im Drop-Bereich erhalten den Faserverteiler als Präfix:

```
Pzzzzz-Fnn-Enn
```

6.2.8.2 Planebene

Endpunkte im Feeder Bereich werden in der Planebene Feeder hinterlegt.

Endpunkte im Drop Bereich werden in der Planebene Drop hinterlegt.

6.2.9 Gebäudeeinführungspunkt (BEP)

Als Gebäudeeinführungspunkte werden jene Knoten bezeichnet, bei denen das Außenkabel in das Innenkabel übergeht. Die Verbindung erfolgt als Spleiß oder mit optischen Steckern.

- Ein Gebäudeeinführungspunkt besitzt eine global eindeutige ID.
- Alle Elemente erhalten als Präfix die Kennung des übergeordneten Faserverteilers.
- Ein Gebäudeeinführungspunkt besitzt die geographischen Merkmale eines Punktes, wird aber noch um Adresse und im Idealfall um beschreibende Merkmale der Situation vor Ort (Skizzen, Photos, ...) ergänzt.

6.2.9.1 Bezeichnung

Die allgemeine Kennung für Gebäudeeinführungspunkte lautet:

```
...-Gnnn
```

Die globale Bezeichnung beinhaltet den zugehörigen Faserverteiler als Präfix:

```
Pzzzzz-Fnn-Gnnn
```

6.2.9.2 Dokumentationspunkte

Für die Dokumentation vor Ort gelten folgende Richtlinien:

- Der Gebäudeanschluss ist zumeist als Spleißbox ausgeführt und zu beschriften.
- Die Ausführung ist adäquat (Aufkleber, Schlagziffern, ...) und robust gegen jegliche Umwelteinflüsse (mechanisch, chemisch, ...) zu wählen und muss der zu erwartenden Haltbarkeit der Rohre bzw. Kabel entsprechen.

6.2.10 Grundstücksübergabepunkt (LEP)

Der Grundstücksübergabepunkt bezeichnet jenen geographischen Punkt, an dem das Leerrohr vom i.A. öffentlichen Grund auf das jeweilige Grundstück des Nutzers übergeführt wird. Dieser Punkt besitzt keine physische Ausprägung und dient ausschließlich zur Dokumentation.

• Ein Grundstückübergabepunkt besitzt eine global eindeutige ID, die sich vom Gebäudeeinführungspunkt nur durch die vorangestellte Kennung unterscheidet (die Ziffern nach dem Kennbuchstaben sind gleich).

• Werden für den Anschluss eines Grundstückes mehrere Grundstücke überquert, so ist jeweils eine zusätzliche, fortlaufende Nummer (.nn) einzufügen. Die Nummerierung beginnt bei 0 beim letzten Übergang zum Grundstück des (späteren) Nutzers.

• Ein Gebäudeeinführungspunkt besitzt die geographischen Merkmale eines Punktes ergänzt um eine Tiefenangabe (falls verfügbar).

6.2.10.1 Bezeichnung

Die allgemeine Kennung für Gebäudeeinführungspunkte lautet:

```
...-Unnn (entspricht ...-Unn.00)
...-Unnn.nn
```

Die globale Bezeichnung beinhaltet den zugehörigen Faserverteiler als Präfix:

```
Pzzzzz-Fnn-Unnn
```

6.2.11 Faserterminierungspunkt (FTU)

Der Faserterminierungspunkt bildet den Abschluss des FTTH Netzes und ist gleichzeitig Übergabepunkt an den Aktiven Netzbetreiber.

- Der Faserterminierungspunkt besitzt eine global eindeutige ID.
- Alle Elemente erhalten als Präfix die Kennung des übergeordneten Gebäudeeinführungspunktes.
- Der Faserterminierungspunkt besitzt keine eigenständigen geographischen Merkmale, enthält aber aber im Idealfall noch beschreibende Merkmale der Situation vor Ort (Skizzen, Photos, ...).

6.2.11.1 Bezeichnung

Die allgemeine Kennung für den Faserterminierungspunkt ist eng mit dem Gebäudeeinführungspunkt (BEP) verbunden:

```
...-Gnnn.nn
```

Die globale Bezeichnung lautet daher:

```
Pzzzzz-Fnn-Gnnn.nn
```

6.2.11.2 Dokumentationspunkte

Für die Dokumentation vor Ort gelten folgende Richtlinien:

- Die einzelnen Fasern sind entsprechend der Nummerierung in der Spleißbox des Gebäudeeinführungspunktes zu beschriften (nn).
- Die Fasern im Faserverteiler sind mit der allgemeinen Kennung von BEP und Fasernummer zu beschriften (Gnnn.nn).
- Die Ausführung hat adäquat (Aufkleber, ...) und robust gegen jegliche Umwelteinflüsse (mechanisch, chemisch, ...) zu erfolgen.

6.3 Objektverbindungen

Rohre und Kabel verbinden die Knotenobjekte miteinander. Die Beschriftung orientiert sich am übergeordneten, terminierenden Objekt. Eine Ausnahme ist eine eventuell notwendige Zubringerverbindung.

Eine Übersicht aller Objektverbindungen und der zugeordneten Muster ist hier dargestellt:

Label	Bezeichnung
Rnnn	Rohr bzw. Rohrverbund
Rnnn.nn	Rohr mit Segmentnummer
Rnnn-nn	Separiertes Rohr aus einer Abzweigung von einem Stammrohr
Knnn	Kabel
Knnn.nn	Kabel mit Segmentnummer

6.3.1 Rohre und Rohrverbünde

Rohre bzw. Rohrverbünde (in Folge nur mehr Rohre genannt) beinhalten die Glasfaser-Kabeln und bieten so Schutz gegenüber Umwelteinflüssen.

6.3.1.1 Bezeichnung

Die Bezeichnungen für Rohre werden vom zuständigen Planungsbüro vergeben. Für die Bezeichnung ist folgendes Verfahren anzuwenden:

- Rohre erhalten eine eindeutige Kennung entsprechend ihrer Position im Backhaul, Feeder oder Drop Bereich.
- Jedes zusätzliche Knotenelement unterteilt ein Rohr im Allgemeinen in Rohrsegmente.
- Zweigt ein einzelnes Mikro-Rohr aus einem Rohrverbund ab, so behält der ursprüngliche Rohrverbund die ID und das einzelne Mikro-Rohr eine daraus abgeleitete ID.
- Zweigt von einem Rohrverbund ein neuer Rohrverbund ab, so erhält dieser eine vom Hauptrohr unabhängige ID.

Rohre im Backhaul-Bereich:

```
Pzzzzz-Rnnn
Pzzzzz-Rnnn.nn
```

Rohre im Feeder-Bereich:

```
Pzzzzzz-Rnnn
Pzzzzzz-Rnnn-nn
```

Rohre im Drop-Bereich:

```
Pzzzzzz-Fnn-Rnnn
Pzzzzzz-Fnn-Rnnn-nn
```

Hinweis

Die Beschriftungen orientieren sich i.A. am übergeordneten Element. Für den Backhaulbereich wird als Bezeichnung dennoch der nachfolgende POP verwendet.

6.3.1.2 Erläuterung

-Rnnn	Eindeutige, 3-stellige Kennung des Rohres bzw. Rohrverbundes			
-Rnnn.nn	Eindeutige, 3-stellige Kennung des Rohres bzw. Rohrverbundes mit Segmentbezeichnung			
-Rnnn-nn	Kennung eines einzelnen Mikro-Rohres mit der Quelle aus einem Rohrverbund (die			
	Segmentbezeichnung des Hauptrohres entfällt hier)			

6.3.1.3 Dokumentationspunkte

Für die Dokumentation vor Ort gelten folgende Richtlinien:

 Rohre sind in allen Knotenobjekten jeweils ankommend und abgehend mit einer Bezeichnung zu versehen. Ankommende Rohre sind mit roten Schildern zu beschriften. Abgehende Rohre sind mit grünen Schildern und der zusätzlichen Bezeichnung des nächsten, terminierenden Knotens (Faserverteiler, BEP) zu beschriften.

- Rohre im Backhaulbereich sind auf der ankommenden Seite (rot) zusätzlich mit der (externen) ID des übergeordneten Elementes zu beschriften.
- Rohre sind ohne Segmentnummern zu beschriften.
- Die Rohre in Rohrverbünden sind bei Offenlegung einzeln zu beschriften.
- Die Art der Bezeichnung ist adäquat (Aufkleber, Schlagziffern, ...) und robust gegen jegliche Umwelteinflüsse (mechanisch, chemisch, ...) zu wählen und muss der zu erwartenden Haltbarkeit der Rohre entsprechen.

6.3.1.4 Regeln für Mitverlegen

Beim Mitverlegen existiert zum Zeitpunkt der Planung im Allgemeinen noch keine fixe Zuordnung zu POP und Faserverteiler. Es sind in diesem Fall die am wahrscheinlichsten in Frage kommenden Elemente auszuwählen und entsprechende Bezeichnungen zu vergeben. Sollte das nicht möglich sein, so ist im Einzelfall mit der nöGIG Rücksprache zu halten.

6.3.2 Kabel

Kabel erhalten über POP und Faserverteiler eine global eindeutige Kennung.

6.3.2.1 Bezeichnung

Die Bezeichnungen für Kabel werden vom zuständigen Planungsbüro vergeben. Für die Bezeichnung ist folgendes Verfahren anzuwenden:

- Kabel erhalten eine eindeutige Kennung entsprechend dem Feeder oder Drop Bereich.
- Jede Spleiß unterteilt ein Kabel in Kabelsegmente.

Kabel im Backhaul-Bereich:

```
Pzzzzzz-Knnn
Pzzzzzz-Knnn.nn
```

Kabel im Feeder-Bereich:

```
Pzzzzz-Knnn
Pzzzzz-Knnn.nn
```

Kabel im Drop-Bereich:

```
Pzzzzz-Fnn-Knnn
Pzzzzz-Fnn-Knnn.nn
```

-Knnn Eindeutige, 3-stellige Kennung des Kabels

-Knnn.nn Eindeutige, 3-stellige Kennung des Kabels mit Segmentbezeichnung

-K014-01 Kabel 14 im Segment 01.

Besitzt ein Kabel nur ein Segment, so kann der Segment Suffix entfallen. Wird eine Kabel später aufgeteilt (gespleißt), so sind jedoch die Segmentnummern nachzuziehen.

6.3.2.2 Dokumentationspunkte

Für die Dokumentation vor Ort gelten folgende Richtlinien:

- Kabel sind an allen Abzweigern mit einer Bezeichnung zu versehen.
- Kabel sind ohne Segmentnummern zu beschriften.

• Die Art der Bezeichnung ist adäquat (Aufkleber, ...) und robust gegen jegliche Umwelteinflüsse (mechanisch, chemisch, ...) zu wählen und muss der zu erwartenden Haltbarkeit der Kabel entsprechen.

6.4 Strecken und Streckenknoten

6.4.1 Strecken und Streckensegmente

Strecken dienen der vorwiegend geographischen Betrachtung eines FTTH Netzes. Eine einzelne Strecke ist daher ein von zwei Netzknoten terminierter, geographischer Ausschnitt eines Netzes.

Jede Verbindung zwischen zwei Abzweigungspunkten erhält eine eindeutige Streckenbezeichnung. Ein Abzweiger ist ein beliebiger Knoten, der eine Verbindung physisch oder logisch aufspaltet. Strecken besitzen daher die folgenden Eigenschaften:

- Strecken bezeichnen die Verbindung zwischen zwei Abzweigern.
- Strecken werden durch Verbinder in Segmente unterteilt.
- Strecken besitzen die geographischen Merkmale einer Polylinie.
- Strecken können sich überlappen (d.h. eine Strecke ist nicht notwendigerweise gleichbedeutend mit einer Künette).

6.4.1.1 Bezeichnung

Die Bezeichnungen für Strecken werden vom zuständigen Planungsbüro vergeben und leiten sich aus der POP bzw. Faserverteiler Bezeichnung ab. Im Allgemeinen bestehen Strecken aus einem oder mehreren Segmenten.

Strecken im Backhaul-Bereich (vor POP):

```
Pzzzzz-Snnn
Pzzzzz-Snnn.nn
```

Strecken im Feeder-Bereich:

```
Pzzzzz-Snnn
Pzzzzz-Snnn.nn
```

Strecken im Drop-Bereich:

```
Pzzzzz-Fnn-Snnn
Pzzzzz-Fnn-Snnn.nn
```

-Snn.nn Eindeutige, 2-stellige Kennung der Strecke mit Suffix Segmentnummerierung

```
-S04.01 Strecke 04 Segment 01
```

Besitzt eine Strecke nur ein Segment, so *kann* der Segment Suffix entfallen. Wird eine Strecke später aufgeteilt, so sind jedoch die Segmentnummern nachzuziehen.

Hinweis

Die Kennzeichnung kommt ausschließlich in der elektronischen Dokumentation zum Einsatz.

6.4.2 Streckenknoten

Streckenknoten dienen zur Dokumentation der baulichen Ausführung der funktionalen Elemente des FTTH Netzes. Zusammen mit den Strecken bilden sie das FTTH Netz geographisch ab.

6.4.3 Bezeichnung

Die Bezeichnungen für Streckenknoten werden vom zuständigen Planungsbüro vergeben und leiten sich aus der zugehörigen Strecke ab. Im Unterschied zu den funktionalen Elementen ist die Bauausführung Teil der eindeutigen ID. Streckenknoten können im Allgemeinen mehr als ein funktionales Element beinhalten.

Streckenknoten im Backhaul-Bereich:

Pzzzzzz-Snnn-?nn ? = H|M|S|G

H = unterirdische Ausführung klein (Handhole)
M = unterirdische Ausführung groß (Manhole)
S = oberirdische Ausführung (Street Cabinet)

G = im Gebäude

Streckenknoten im Feeder-Bereich:

Pzzzzz-Snnn-?nn ? = H|M|S|G

Streckenknoten im Drop-Bereich

Pzzzzzz-Fnn-Snnn-?nn ? = H|M|S|G

Die Segmentnummerierung der Strecke kann optional mitverwendet werden, ist jedoch nicht Teil der ID.

Pzzzzz-Fnn-Snnn.nn-?nn

Hinweis

Die Kennzeichnung kommt ausschließlich in der elektronischen Dokumentation zum Einsatz.

6.5 Bezeichnungen im POP

Hinweis

Dieser Abschnitt zum POP wird ergänzt.

6.5.1 Bezeichnung

Die Bezeichnungen werden vom zuständigen Planungsbüro vergeben.

...

6.5.2 Dokumentationspunkte

Für die Dokumentation vor Ort gelten folgende Richtlinien:

- Die Ausführung ist adäquat (Aufkleber, ...) und robust gegen jegliche Umwelteinflüsse (mechanisch, chemisch, ...) zu wählen.
- Die Beschriftungen sind klar ersichtlich und zweifelsfrei anzubringen. Mehrfachbeschriftungen sind dort anzubringen, wo es sinnvoll erscheint (z.B. am Türrahmen und am Rahmen des geöffneten Schrankes). Beschriftungen sind je Komponente an identischer Stelle anzubringen, bevorzugt ist die Position links-oben.
- Die Kennung des POP (Pzzzzzz) ist immer mitzuverwenden.
- Veraltete Beschriftungen (durch Wiederverwendung von Komponenten) sind rückstandsfrei zu entfernen. Ist das nicht möglich, so sind diese Beschriftungen zweifelsfrei als ungültig zu markieren.

Vermessung 57

7 Vermessung

7.1 Einmessvorschrift

Folgende allgemeine Einmessvorschriften gelten:

- Jede Einmessung hat nach Lage im Landes-Koordinatensystem (Gauß-Krüger) zu erfolgen.
- Die Genauigkeit der Messpunkte beträgt minimal +/- 5 cm.
- Die gemessenen Punkte sind in ein geeignetes, vom Auftraggeber freigegebenes, CAD oder GIS-Programm einzulesen.
- Die Vermessungsarbeiten sind von fachkundigem Personal durchzuführen.

7.2 Vermessungsumfang und -punkte, Kodierung

Grundsätzlich sollen die Vermessungsarbeiten am offenen Graben stattfinden. Im Ausnahmefall kann eine Messung am geschlossenen Graben durchgeführt werden, wenn

- zuvor eine genaue Markierung des Messobjektes an der Oberfläche stattgefunden hat und
- ein fachkundiger Tiefbauer / Bauleiter, der beim Bau anwesend war, zur Einmessung bereit steht.

Aufgemessen wird die Achsmitte des Bündels im Graben mit Rechts- und Hochwert im Landeskoordinatensystem. Diese Punktaufnahmen haben an folgenden Stellen auf der Trasse zu erfolgen:

- in jenen Abständen, welche die Trassenführung eindeutig definieren
- bei Einbau von Formteilen
- bei allen Richtungsänderungen
- bei einem Abzweig zu einem oder mehrerer Hausanschlüsse
- bei der Überleitung von einem Grundstück in ein anderes
- bei Schachtbauwerken mit einer Aufmessung von mindestens 3 Eckpunkten
- bei Änderung des Grabeninhaltes (Grabenprofiländerung)

7.3 Eintragung in das Netzinformationssystem

Das dokumentierte Netz ist an die nöGIG zu übergeben.

Das mit Bau und Vermessung beauftragten Unternehmen liefert die eingemessene Trasse als GIS-fähige Datei (Shape-Format). Die Daten enthalten auch Grabenprofile, Beschriftungen, besondere Hinweise.

Wichtig

 $\ die\ Rohrverb\"{a}nde\ und\ Mikrorohre\ im\ Querschnitt\ sind\ farblich\ -entsprechend\ der\ Farbkodierung-\ darzustellen.$

Vermessung 58

Alle Netzelement und Objekte sind lagerichtig darzustellen und mit den folgenden Sachdaten zu versehen:

Objekt Objekttyp	Sachdaten
POP Punktobjekt	POP-Name / Standort / Bezeichnung / Typ / Maße / eingebaute Technik / Eigentümer / Bemerkung
Faserverteiler als Schacht Punktobjekt	POP-Zuordnung / Standort / Bezeichnung / Fabrikat / Maße / Ausrichtung in Grad / Anzahl Spleißmöglichkeiten / max. Rohraufnahme / Eigentümer / Bemerkung
Faserverteiler als Schrank Punktobjekt	POP-Zuordnung / Standort / Bezeichnung / Fabrikat/ Maße / Ausrichtung in Grad / Muffentyp / Muffenbezeichnung / Eigentümer / Bemerkung
Masten Punktobjekt	POP-Zuordnung / Standort / Bezeichnung / Höhe / Material / Eigentümer / Bemerkung
Hausanschluss Punktobjekt	POP-Zuordnung / Schacht-Verteilerschrank Zuordnung / Rohrverbundsbezeichnung / Einzelrohrbezeichnung / Standort BEP / Ausbaustatus / Adresse / Eigentümer / Kontaktdaten / Steckertyp / Bemerkung
Trasse Linienobjekt	Rohrtyp und Anzahl / Tiefenlage / Baujahr / Eigentümer / Trassengrund (öffentlich / privat) / Bemerkung
Texte Textobjekt	Hinweistext

7.4 Messungen am Glasfasernetz

7.4.1 Standardmessung

• Es ist eine OTDR (Reflexions-)Messungen vorgesehen.

7.4.2 Rotlichtprüfung

• Vor der Inbetriebnahme wird eine Rotlichtprüfung vom Kundengebäude zum POP durchgeführt, um ein durchgängiges Signal und ggf. Vertauschungen der Fasern zu identifizieren. Die Abnahme im POP erfolgt durch einen Beauftragten von [PARTNER].

7.4.3 Reflexionsmessung

- Die Fasern für Daten und Voice werden nach dem Spleißen der Pigtails (auf beiden Seiten) mit einer ein-seitigen Reflexionsmessung mit 1310nm und 1550nm vom Kundengebäude aus gemessen. Hierzu ist eine Vorlauffaser mit mind. 200 Metern zu verwenden.
- Die Dämpfungswerte dürfen im Durchschnitt den Wert von 0,15 dB je Spleißpunkt nicht überschreiten.
- Die TV-Fasern werden rückwärts vom Kundengebäude aus über die Splitter in den Muffen hinweg mit 1550nm gemessen. TV Fasern sind besonders reflexions- und dämpfungskritisch.

7.4.4 Messprotokolle

• Die Messprotokolle sind in elektronischer Form als originale Messdateien inklusive Auswertung an den Auftraggeber zu übergeben.

B Internationale Standards und Verweise

A.1 Farbcodierung nach IEC 60304

Die Nummerierung erfolgt von innen nach außen im Uhrzeigersinn.

Nr.	Farbe	Nr.	Farbe	Nr.	Farbe	Nr.	Farbe
01	rot	07	braun	13	rot/sw	19	braun/sw
02	grün	08	violett	14	grün/sw	20	violett/sw
03	blau	09	türkis	15	blau/sw	21	türkis/sw
04	gelb	10	schwarz	16	gelb/sw	22	schwarz/sw
05	weiß	11	orange	17	weiß/sw	23	orange/sw
06	grau	12	rosa	18	grau/sw	24	rosa/sw